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The effective diffusivity of Brownian tracer particles confined in periodic micro-channels is smaller than
the microscopic diffusivity due to entropic trapping. Here, we study diffusion in two-dimensional periodic
channels whose cross-section presents singular points, such as abrupt changes of radius or the presence of thin
walls, with openings, delimiting periodic compartments composing the channel. Dispersion in such systems
is analyzed using the Fick-Jacobs’ approximation. This approximation assumes a much faster equilibration
in the lateral than in the axial direction, along which the dispersion is measured. If the characteristic width
a of the channel is much smaller than the period L of the channel, i.e. ε = a/L is small, this assumption
is clearly valid for Brownian particles. For discontinuous channels, the Fick-Jacobs’ approximation is only
valid at the lowest order in ε and provides a rough, though on occasions rather accurate, estimate of the
effective diffusivity. Here we provide formulas for the effective diffusivity in discontinuous channels that are
asymptotically exact at the next-to-leading order in ε. Each discontinuity leads to a reduction of the effective
diffusivity. We show that our theory is consistent with the picture of effective trapping rates associated with
each discontinuity, for which our theory provides explicit and asymptotically exact formulas. Our analytical
predictions are confirmed by numerical analysis. Our results provide a precise quantification of the kinetic
entropic barriers associated with profile singularities.

PACS numbers: 05.40.-a,66.10.cg,05.60.Cd

INTRODUCTION

Characterizing the dispersion of random walkers in
complex heterogeneous media is an important issue that
appears in contexts as various as mixing1–3, sorting4, con-
taminant spreading5,6 and diffusion controlled reactions7.
In particular, the dispersion of Brownian particles
in channels is a paradigm for diffusion in confined
and crowded environments such as biological cells, ze-
olites, porous media, ion channels and microfluidic
devices8–11. The relation between confining geometry
and effective diffusivity has been extensively investigated
in the physics and chemistry literature over the last
decade9,12–16. One of the most popular theoretical ap-
proaches to diffusion in channels is the so-called Fick-
Jacobs’ (FJ) approximation17, based on a dimensional
reduction. In the case of two-dimensional channels of lo-
cal radius R(x), with x the coordinate in the longitudinal
direction, the FJ approach reduced the study of tracer
dispersion to that of an effective one-dimensional parti-
cle, with position x(t), diffusing in an effective entropic
potential φ(x) = −kBT lnR(x). In symmetric periodic
channels, the late-time effective diffusivity De for this
one-dimensional problem can then be deduced from the
Lifson-Jackson formula18,

De ' DFJ =
D0

〈R〉〈R−1〉 , (1)

where D0 is the microscopic diffusivity, and 〈R〉 =∫ L
0
dxR(x)/L denotes the uniform average over the chan-

nel period L.
This basic FJ approximation is valid when the typical

equilibration time in the lateral direction is much smaller
than the characteristic time scale of the dynamics in the

longitudinal direction. This means that the FJ expres-
sion (1) can be seen as the leading order term of an ex-
pansion of De in powers of the small parameter ε ≡ a/L,
where a is the typical lateral channel width19. For non-
vanishing ε, FJ theories can be made more accurate by in-
troducing a position dependent local diffusion coefficient
D(x) in the effective one-dimensional description15,20–29.
At next-to-leading order, D(x) ' D0(1 − R′2/3)15,20,21,
leading (again using the Lifson-Jackson formula18) to

De '
D0

〈R〉〈R−1〉

(
1− 〈R

′2/R〉
3〈R−1〉 +O(ε4)

)
, (2)

where the prime denotes the derivative with respect to
x. For smooth channels, it has been checked30,31 that the
above formula is exact at order ε2, and it can be extended
to higher orders15,30,31. However, in the case of channel
profiles presenting a discontinuity, it is straightforward
to see that the next order correction to the dispersivity
De given in Eq. (2) diverges. The appearance of such
a divergence usually suggests two possibilities. Firstly
it could be that the basic perturbation series needs to
be resummed, for instance, on resummation, divergent
terms appear in a denominator rather than a numerator
and thus give finite contributions. The other possibil-
ity is that the true perturbation series is not analytic in
the naive expansion parameter, which in the approaches
mentioned above turns out to be ε2. In our study we
show that it is the latter phenomenon which is at play
and that the perturbation expansion parameter is in fact
ε rather than ε2.

To treat this problem, existing approaches assume that
the effective dynamics for x(t) should include local traps
at the points of discontinuity, the associated trapping
rates are calculated approximately via the boundary ho-
mogenization approximation32,33. Recently24, this the-
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ory has been found to be consistent with the approaches
assuming a local diffusivity D(x). However, the effec-
tive dispersivity contains coefficients which not known
in explicitly. In a third class of approaches, dispersion
has been estimated by using first passage arguments34,35,
which is valid in the limit of small openings between
pores, but whose link with the FJ regime is unclear36.

The aim of the present paper is to derive a formula
for the effective dispersion in discontinuous channels that
is asymptotically exact in the slowly varying limit ε →
0. We consider two dimensional periodic channels which
possess a finite number n of discontinuities in each period.
Our main result is that the dispersion in such channels
can be written as

De '
D0

〈R〉〈R−1〉

(
1−

n∑
i=1

µi
L〈R−1〉 +O(ε2)

)
. (3)

Here, the positive coefficients µi only depend on the ge-
ometry of the ith discontinuity (see below). Furthermore
the effect of each distinct discontinuity is additive and
thus the result applies to a wide range of channels in a
simple, building block, like manner. The above formula
generalizes Eq. (2) to the case of discontinuous profiles,
and shows that the associated corrections to dispersion
are of order ε, and are as such thus much more important
than for smooth channels (where they are of order ε2).
Importantly, our approach does not rely on a reduction
of dimensionality : we do not need to define a local dif-
fusion coefficient near the singular parts of the channel
to obtain it, such local diffusion coefficient would clearly
be ill-defined near the profile discontinuity. Our analy-
sis is however compatible with the notion of associated
trapping rates to model the singularity, and provides a
means to obtain asymptotically exact formulas for such
trapping rates, which are shown to be proportional to
1/µ.

Our formula (3) shows that each discontinuity has a
negative contribution to the dispersion, confirming that
it effectively acts as a local trap for the Brownian parti-
cles. We have exactly calculated the coefficients µ, that
quantify the impact on dispersion, for two different types
of basic discontinuities, shown in Fig. 1. First, we have
considered the case where the channel radius changes lo-
cally from a value R− to R+ (see Fig. 1a). In this case, µ
is denoted by µd (where d stands for discontinuous) and
depends only on the parameter ν = R+/R−:

µd(ν) =
1 + ν2

ν π
ln

∣∣∣∣1 + ν

1− ν

∣∣∣∣− 2

π
ln

∣∣∣∣ 4ν

1− ν2

∣∣∣∣ . (4)

Notice that µd(ν) = µd(ν
−1), this must be the case as

we have the same diffusion constant upon flipping the di-
rection of the channel and thus switching R+ and R−.
We have also considered a second type of discontinu-
ity, in which the profile contains walls that partially ob-
struct the channel, forming different compartments (see
Fig. 1b). In this case, µ is denoted by µc (c standing for
compartments) and depends on the geometric parameter

x
R(x)

R−

R+(a)

x
R(x) R0

R−
(b)

x
R(x)

R−

R0

R+

(c)

FIG. 1. Illustration of the three types of discontinuities of
periodic channels that are considered in this paper: (a) dis-
continuity of the channel radius, (b) presence of walls sepa-
rating between compartments and (c) general case composed
by both type of discontinuities.

ν = R0/R
− (where R0 is the radius at minimal opening

and R− is the radius just next the wall), and is given by

µc(ν) = − 4

π
ln
(

sin
πν

2

)
. (5)

Both functions µc and µd are plotted in Fig. 2. We also
consider a hybrid case where the discontinuity is a com-
bination of these type of discontinuities.

The outline of this paper is as follows. In Section I
we present the general formalism used and show that
the effective diffusivity can be computed via a partial
differential equation for an auxiliary function over one
channel period. In Section II, we consider discontinuous
channels. We present a method to compute this auxil-
iary function with matched asymptotic expansions and
we compute the effective diffusivity. In Section III A, we
show how to adapt the calculation for compartmentalized
channels and in Section III B we generalize the result to
systems having hybrid forms of the discontinuous and
compartmentalized singularities. Our formulas are vali-
dated by comparison with the numerical solutions of the
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FIG. 2. Representation of the function µ(ν) which quantifies
the impact on dispersion of the presence of a radius disconti-
nuity (µc) or of a partially obstructing wall delimiting com-
partments (µd). The geometric parameter is ν = R−/R+ for
discontinuous channels and ν = R−/R0 for compartmental-
ized channels, where R−, R0 and R+ are as shown in Fig. 1.

relevant partial differential equations in Section IV. In
Section V, we determine the exact expressions for the of
the trapping rates that should be used for the boundary
homogenization method, and compare them with exist-
ing approximations.

I. GENERAL FORMALISM: EXACT EXPRESSION OF
THE EFFECTIVE DIFFUSIVITY

We consider a symmetric two-dimensional channel of
local radius R(x), where x denotes the longitudinal coor-
dinate. The channel is periodic in x with period L. We
denote by a the channel width at its minimum, and we
define the dimensionless profile ζ by

R(x) = a ζ(x/L), (6)

where ζ(X) is a periodic function of X = x/L, with unit
period, that describes the geometry of the profile.

We aim to calculate the effective diffusivity

De = lim
t→∞

[x(t)− x(0)]2/2t, (7)

where · represents the ensemble average over particle
trajectories. Rather than reducing the problem to an ef-
fective one-dimensional dynamics for x(t), we use the fol-
lowing exact expression of the effective diffusivity31,37,38

De

D0
= 1− 1

|V |

∫
∂V

dS nx f. (8)

Here, the integral is performed on the boundary ∂V of
the channel (over one periodic cell), D0 is the micro-
scopic diffusivity, dS represents the surface element, nx

is the x component of the unit normal vector n (ori-
ented towards the exterior of the channel), |V | = 2〈R〉L
is the volume of one channel period. Furthermore, De

depends on an auxiliary function f(x, y) which satisfies
the Laplace equation

∇2f = ∂2
xf + ∂2

yf = 0, (9)

where y is the transverse coordinate. In addition. f is
a periodic function of x, and at the channel boundary it
obeys the boundary condition

[n · ∇f − nx]y=±R(x) = 0. (10)

The above expressions are a particular case of the for-
mulas for the effective diffusivity for general periodic
systems37,38, and are also consistent with the macro-
transport theory of Brenner and Edwards39. An impor-
tant dimensionless parameter of the problem is the ratio
of lateral to longitudinal length scales

ε = a/L (11)

and we will study the limit of slowly varying channels, i.e.
ε → 0. For smooth channels, De can be systematically
expressed as an expansion in powers of ε. Here we focus
on non-smooth channels, for which only the leading order
result is exactly known [Eq. (1)].

To simplify notation, without loss of generality, we set
the period length to L = 1 and the microscopic diffusivity
to D0 = 1. In these units, ε is just the typical lateral
dimension of the channel, and R = εζ.

II. DISPERSION IN WEAKLY-VARYING
DISCONTINUOUS CHANNELS

Here, we first consider the case that ζ(x) presents a sin-
gle discontinuity, whose origin is set at the origin x = 0
(modulo the period). There, ζ(x) is assumed to change
sharply from ζ− ≡ ζ(0−) to ζ+ ≡ ζ(0+), as in Fig. 1a.
In the slowly-varying limit ε → 0, characterizing f is a
singular perturbation problem, and it is crucial to dis-
tinguish between a region near the channel discontinuity
(called the inner region), and a region far from the dis-
continuity (called the outer region).

A. The solution far from the discontinuity

We first describe the expansion of f in the outer region,
where it is convenient to use the rescaled variables

Y = y/ε, X = x, (12)

so that the ranges of X,Y become independent of ε. We
define the function F such that

f(x, y) = F (X,Y ). (13)
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It is important to note that F is periodic but may present
an irregular behavior (to be determined below) near the
discontinuity, at X = 0 (modulo 1). The equation satis-
fied by F in the bulk follows from Eq. (9),

ε2∂2
XF + ∂2

Y F = 0, (14)

and the boundary conditions Eq. (10) become

[ε2ζ ′(X)∂XF − ∂Y F ]Y=±ζ(X) = ε2ζ ′(X). (15)

In the limit ε→ 0, we look for solutions of the form

F (X,Y ) =

∞∑
i=0

εiFi(X,Y ). (16)

Note that here it is essential to use ε as the small param-
eter, and not ε2 which is the relevant small parameter
used to study smooth channels30.

Inserting this series expansion into the above equations
leads to recurrence equations for the functions Fi. This
calculation is very similar to the approach presented by
Dorfman and Yariv30, and the details are given in Ap-
pendix A. At leading order, we find

F ′0(X) = 1− 1

〈ζ−1〉ζ(X)
. (17)

At next order, we find that F1 is discontinuous at 0 (and
hence at 1 by periodicity) and its derivative is given by

F ′1(X) =
F1(0−)− F1(0+)

〈ζ−1〉ζ(X)
. (18)

The unknown value of the jump F1(0−) − F1(0+) will
be deduced from the matching condition with the inner
solution in the next section.

B. The solution near the discontinuity

We now consider the function f near the channel dis-
continuity (located at X = 0 modulo 1). In this region,
the relevant length scale for the transverse direction is the
channel width ∼ ε. Since the change of profile is abrupt,
we expect that f varies with the same length scale in the
longitudinal direction. This suggests that the relevant
variables in the inner region are x̃ and ỹ defined by

x̃ = x/ε = X/ε, ỹ = y/ε = Y. (19)

We note that, if |x| � 1, one can simplify the domain
by noting that R(x) ' εζ+ for x > 0, and R(x) ' εζ−

for x < 0. It is convenient to introduce the function φ,
defined by

φ(x̃, ỹ) = f(x, y)− x. (20)

This function φ satisfies the Laplace’s equation,

(∂2
x̃ + ∂2

ỹ)φ = 0, (21)

and it follows from Eq. (10) that Neumann conditions

n · ∇̃φ = 0 hold at the channel boundary. We again look
for an expansion of the form

φ(x̃, ỹ) = φ0(x̃, ỹ) + εφ1(x̃, ỹ) + ... (22)

As a result all the functions φi satisfy Laplace’s equa-
tion with Neumann boundary conditions at the channel
boundary, but an additional condition is needed to de-
termine them. This additional condition comes from the
requirement that both expansions (16) and (22) must
lead to the same value of f when ε � |x| � 1. Thus
the value of F for small X must be equal to x+ φ when
x̃→ ±∞. This condition can be written explicitly as

φ+ εx̃ '
x̃→±∞

F0(0) + ε[x̃F ′0(0±) + F1(0±)] + ... (23)

At leading order in ε, the above equations imply that
φ0 → F0(0) for x̃ → ±∞, the solution for φ0 is thus
simply the uniform solution φ0 = F0(0). At order ε, using
the equations (23) and (17), we see that the asymptotic
behavior of φ1 is

φ1(x̃→ ±∞, ỹ) = F1(0±)− x̃

ζ±〈ζ−1〉 . (24)

We also note that, by symmetry, the boundary condi-
tions at y = −R(x) can be replaced by Neumann condi-
tions ∂ỹφ1 = 0 at the center-line ỹ = 0. At this stage,
we are thus left with the problem of finding an harmonic
function φ1 in a corner-shaped domain (Fig. 3a), with
Neumann conditions at the channel boundary and at the
centerline, the behavior of φ1 at infinity being specified
by (24). The solution to this problem can be obtained
with a complex analysis.

We introduce the complex variable z̃ = x̃+ iỹ, and we
consider a conformal mapping

z̃ = Wd(Ω), (25)

such that the channel boundary and its centerline are the
images of, respectively, the positive and negative real axis
(Fig. 3a) in the (complex) Ω-plane. Such a mapping can
be found by using the Schwarz-Christoffel method (see
appendix B for details), leading to

Wd(Ω) =
ζ−

π

{
1√
k

arccosh

[
(k + 1)Ω− 2k

(k − 1)Ω

]

− arccosh

[
2Ω− (k + 1)

k − 1

]}
+ iζ−,

(26)

where the parameter

k = (ζ−/ζ+)2 (27)

is assumed to be larger than one (without loss of gener-
ality). Note that the image of Ω = 1 is Wd(1) = iζ+,
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Wd(1) = iζ+

Wd(k) = iζ−(a)

0 1 k

Wd(Ω)

Wc(1) = iζ0

Wc(k) = Wc(k
−1) = iζ−(b)

0 k−1 1 k

Wc(Ω)

Wdc(1) = iζ0

Wdc(k) = iζ−

Wdc(k̃) = iζ+

(c)

0 k̃ 1 k

Wdc(Ω)

FIG. 3. Transformation of the boundaries close to the dis-
continuity for discontinuous (a), compartmentalized (b) and
discontinuous-compartmentalized (c) channels after the con-
formal mapping Wd(Ω) given by Eq. (26), Wc(Ω) given by
Eq. (44) and Wdc(Ω) given by Eq. (C1) respectively.

the image of Ω = k is Wd(k) = iζ−, while the image
of the negative real axis is the center-line of the chan-
nel. A similar mapping has recently been used24, but did
not lead to explicit expressions of the effective diffusivity.
We check in Appendix D that our approach is compatible
with it.

Now, since Wd is a conformal mapping, the function
φ1 seen as a function of Ωx = Re(Ω),Ωy = Im(Ω) must
satisfy Laplace’s equation, with Neumann conditions on
the boundaries which are now the positive and negative
real axes. The solutions are thus of the form

φ1 = C1 + C2 ln |Ω|, (28)

where C1 and C2 are constants. These constants are de-
termined by making explicit the relation x̃ = Re Wd(Ω)
for x̃→ −∞ (or, equivalently, large Ω) and for x̃→ +∞
(or, equivalently, small Ω). We find

x̃ '
|Ω|→+∞

ζ−

π

(
1√
k

ln

√
k + 1√
k − 1

− ln
4|Ω|
k − 1

)
, (29)

and

x̃ '
|Ω|→0

ζ−

π
√
k

(
ln

4k

(k − 1)|Ω| −
√
k ln

√
k + 1√
k − 1

)
. (30)

Inserting the value of ln |Ω| deduced from these expres-
sions into (28) and comparing with (24) enables the iden-
tification of C2

C2 =
1

π〈ζ−1〉 , (31)

and of the jump of F1:

F1(0−)− F1(0+) =

1

π〈ζ−1〉

(
1 + k√
k

ln

√
k + 1√
k − 1

− 2 ln
4
√
k

k − 1

)
. (32)

To summarize we have obtained an exact solution for φ1,
seen as a function Ω instead of x̃, ỹ. We shall see in the
next subsection that there is no need to know x̃ as a
function of Ω to obtain the effective diffusivity.

C. Expression of the effective diffusivity for a
discontinuous channel

We now use our expressions for the auxiliary function
to deduce the value of the effective diffusivity. Rewriting
Eq. (8) leads to

De = 1 +Douter +Dinner, (33)

Douter =
1

〈ζ〉

∫ 1

0

dxζ ′(x)f(x,R(x)), (34)

Dinner = − 1

ε〈ζ〉

∫ εζ−

εζ+
dyf(0, y), (35)

where we have separated the contributions coming from
the inner and the outer regions. The contribution of the
inner region is

Dinner = − 1

〈ζ〉

∫ ζ−

ζ+
dỹ[φ0 + εφ1(0, ỹ)]. (36)

However, we remark that for any harmonic function
φ(x, y), we have the relation for any closed domain V :∮
∂V

dS nxφ =

∫
V

dV ∇φex

= −
∫
V

dV x∇2φ+

∮
∂V

dS xn · ∇φ =

∮
∂V

dS xn · ∇φ.
(37)

Applying this formula to V large but in the boundary
layer and φ = φ0 + εφ1, and taking into account its
boundary conditions leads to

Dinner =
ζ+[F0(0) + εF1(0+)]− ζ−[F0(0) + εF1(0−)]

〈ζ〉 .

(38)
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In turn, the integral forDouter is dominated by the contri-
bution coming from the outer solution (the contributions
coming from the inner-solution are of higher order since
ζ ′ vanishes in the inner region). Hence,

Douter =
1

〈ζ〉

∫ 1

0

dXζ ′(X)[F0(X) + εF1(X)]. (39)

Integrating by parts, we obtain

Douter = − 1

〈ζ〉

∫ 1

0

dXζ(X)[F ′0(X) + εF ′1(X)]

+
ζ−

〈ζ〉 [F0(1) + εF1(1−)]− ζ+

〈ζ〉 [F0(0) + εF1(0+)]. (40)

Collecting the results (38), (40) we see that

De =
1

〈ζ〉〈ζ−1〉
{

1− ε
[
F1(0−)− F1(0+)

]}
, (41)

which means that De is simply related to the jump of
the function F1 at the discontinuity. Using Eq. (32) with
k = 1/ν2 finally leads to

De =
1

〈ζ〉〈ζ−1〉

[
1− εµd(ν)

〈ζ−1〉

]
, (42)

where µd is given by Eq. (4). This is the announced
result in the case of channels presenting discontinuities.
We notice that µd(ν) = µd(1/ν), which is a consequence
of invariance of De under the transformation x→ −x.

D. Presence of several discontinuities

We now consider a channel containing several discon-
tinuities, an example is shown in Fig. 1a. In this case
we can decompose the channel into several outer regions
where the equations (17) and (18) are still verified by F ′0
and F ′1 respectively, which means that the expressions
for F0 and F1 are identical on all outer regions up to an
additive constant.

Moreover, close to the discontinuity present at x = xi,
we see that to the leading order F0(x+

i ) = F0(x−i ), which
means that F0 is continuous in the entire channel. At the
first order of perturbation, the jump F1(x−i )−F1(x+

i ) of
the function F1 is given by Eq. (32), which depends only
on the geometry of the ith discontinuity. These condi-
tions on F0 and F1 close to all singularities of the chan-
nel impose that the expressions for F0 and F1 do not in-
volve any constant depending on the outer region, just a
global one. Due to the relation

∫
∂V

dS nx = 0, the effec-
tive diffusivity De is independent of this global constant
in Eq.(8). Furthermore, all discontinuities give an addi-
tive contribution to the diffusivity as can be seen from
Eq.(42) at first order in ε. This leads to the expression
(3). Let us finally note that the above only applies in
the case where the discontinuities are separated by dis-
tances O(1) and when they are separated by distances
O(ε) the analysis breaks down and the full inner solution
with both discontinuities must be solved.

III. GENERALIZATION TO OTHER TYPES OF
DISCONTINUITIES

A. Dispersion for weakly varying compartmentalized
channels

We now show how to adapt the results of the previous
section to consider dispersion in channels with different
type of profile singularities. We consider here symmetric
two-dimensional channels, which are partially obstructed
by walls taken to be at the position x = 0. We refer to
these kind of channels as compartmentalized ones. At
the center of these walls, we assume the presence of an
opening whose (reduced) radius is ζ0. We denote ζ− the
radius just after (and before) the wall, this geometry is
shown in Fig. 1b.

As in the case of a discontinuous channel, we distin-
guish between an inner and an outer region. In the
outer region, the analysis is exactly the same, and the
auxiliary function satisfies Eqs. (17) and (18). In the
inner region, the function f has the same structure,
φ(x̃, ỹ) = f(x, y) − x (with the same definition of the
coordinates in the boundary layer). The modification of
Eq. (24) for the matching condition, which gives the value
of φ1 for large arguments is given by:

φ1(x̃→ ±∞, ỹ) = F1(0±)− x̃

ζ−〈ζ−1〉 . (43)

The function φ1 satisfies Laplace’s equation in the do-
main drawn in Fig. 3b, with Neumann conditions at the
channel boundaries and at the centerline. We apply again
the Schwarz-Christoffel method to find a conformal map-
ping enabling to solve for φ1. We find in Appendix B that

Wc(Ω) =
2ζ−

π

[
ln

(√
kΩ− 1 +

√
Ω/k − 1√

(k − 1/k)Ω

)
−

ln

(√
Ω− k +

√
Ω− 1/k√

k − 1/k

)]
+ iζ−, (44)

where the parameter k is given by

k = cotan2 πζ0
4ζ−

, (45)

and is assumed to be larger than one. Note that
Wc(1/k) = Wc(k) = iζ−, Wc(1) = iζ0 while the image of
negative real axis is the centerline of the channel and the
image of the positive real axis is the channel boundary
(Fig. 3b). Following the same reasoning as before, we
can express φ1 as a function of the complex variable Ω,
as in Eq. (28)

φ1 = C1 + C2 ln |Ω|. (46)

We can thus deduce the jump for F1 from these expres-
sions, by inverting explicitly the mapping x̃ = Re Wc(Ω)
for x̃→ −∞ (or, equivalently, |Ω| → ∞) where

x̃ '
|Ω|→∞

−ζ
−

π
ln

4k|Ω|
(k + 1)2

, (47)
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and for x̃→ +∞ (or, equivalently, small |Ω|), for which

x̃ '
|Ω|→0

−ζ
−

π
ln

(k + 1)2|Ω|
4k

. (48)

Comparing these expressions with Eq. (43), we identify
the jump of the function F1,

F1(0−)− F1(0+) =
2

π〈ζ−1〉 ln
(k + 1)2

4k
(49)

and the value of the constant C2

C2 =
1

π〈ζ−1〉 . (50)

We can check that Eq. (41) still holds here,

De =
1

〈ζ〉〈ζ−1〉
{

1− ε
[
F1(0−)− F1(0+)

]}
, (51)

so that the effective diffusivity is straightforwardly de-
duced from the jump of the function F1. Setting ν =
ζ0/ζ

− and using the definition (45) of k, we finally ob-
tain

De '
1

〈ζ〉〈ζ−1〉

(
1− εµc(ν)

〈ζ−1〉

)
, (52)

which is the expression for µc given in Eq. (5) and is
the announced result for dispersion in compartmentalized
channels.

B. The case of weakly varying
discontinuous-compartmentalized channels

We now consider the dispersion in channels with a gen-
eral type of singularity mixing the two previous cases,
shown in Fig. 1c. Here, we assume that the channel is
partially obstructed by walls (at x = 0, 1, 2...) with a dif-
ferent radius between the negative (before the wall) and
positive (after the wall) regions. We denote by ζ0 the
reduced channel radius at the opening, whereas ζ− is the
radius just before the wall and ζ+ is the radius just after
the wall, as shown in the left figure of Fig. 3c.

Following exactly the same steps as in the previous
section, we obtain for this class of channels

De '
1

〈ζ〉〈ζ−1〉

(
1− εµdc(k, k̃)

〈ζ−1〉

)
, (53)

Here, µdc is defined by

µdc(k, k̃) =
1 + kk̃√

kk̃
ln

√
k +

√
k̃

√
k −

√
k̃
− 2 ln

4
√
kk̃

k − k̃
, (54)

and the parameters k and k̃ are defined by the system

kk̃ =

(
ζ−

ζ+

)2

(55)

π

2

(
ζ0
ζ−
− 1

)
=

1√
kk̃

arctan

√
k̃(k − 1)

k(1− k̃)
− arctan

√
k − 1

1− k̃
(56)
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c(
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FIG. 4. Numerical checks of the expression (5) for the effective
diffusivity, in the case ζ(X 6= 0) = 1 + 0.5ξ[1− cos(2πX)], in
the presence of a wall with reduced opening radius ζ0 = 1 at
X = 0, 1, .... Here ν = 1/(1 + ξ). (a) 1−De/DFJ represented
for various ξ [symbols: numerical solution of Eqs. (8)-(9)-(10),
dashed lines: analytical prediction (3)]. (b) Full line: Value of
µ predicted by (5), symbols: value of µ obtained from a linear
fit of the data of (a) and assuming the behavior (3). Inset:
shape of the channel. The channel shape is represented in
inset for ξ = 2.

In the limit that ν = ζ0/ζ
− → ∞ and fixed ζ+/ζ0 (i.e.

when the opening is small compared to at least one ra-
dius outside the discontinuity), we obtain the following
behavior

µdc '

−
4
π ln πζ0

2
√
ζ+ζ−

(if ζ+ 6= ζ0)

2
π

(
1− ln 4ζ+

ζ−

)
(if ζ+ = ζ0).

(57)

IV. COMPARISON WITH NUMERICAL SOLUTIONS
AND THE LITERATURE

We now validate our analytical approach by comparing
with the exact numerical integration of the set of partial
differential equations (8)-(10). In figure 5 we show results
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FIG. 5. Numerical check of the expression (4) for the effective
diffusivity of discontinuous channels, whose profile is given by
ζ(X) = 1 + ξ[0.39 − 0.41 sin((4X + 1)π/3) + 0.20 sin((8X +
1)π/3))] for 0 < X < 1. Here ν = 1/(1 + ξ) and ξ is the
amplitude of variation of the channel radius. (a) 1−De/DFJ

is represented for various ξ [symbols: numerical solution of
Eqs. (8)-(9)-(10), dashed lines: analytical prediction (3)]. (b)
Full line: Value of µ predicted by (4), symbols: value of µ
obtained from a linear fit of the data of (a) and assuming the
behavior (3). Inset: shape of the channel for ξ = 2.

for an example of a discontinuous channel, whose shape
is represented in the inset of Fig. 5b. We first check in
Fig. 5a that the first corrections to the basic Fick-Jacobs’
results are of order ε, as opposed to smooth channels for
which the correction is of order ε2. Furthermore, Fig. 5b
shows that the coefficient of the ε-correction to De is
correctly predicted by our formula (4), thus validating
our analytical approach. We perform a similar analysis
for an example of channel presenting local walls defining
compartments, represented in the inset of Fig. 4. The
numerical analysis clearly demonstrates that the next-
to-leading order term for the dispersion is correctly pre-
dicted by Eq. (5), validating our analysis for this class of
channels as well.

Furthermore, the case of discontinuous channels was
considered in Ref.24. We check in Appendix D that our

theory and that of Ref.24 are consistent in the case ζ− =
2ζ+ (which is the only case for which explicit expressions
are given in Ref.24).

We can also check our analytical, asympotically-exact,
result for the case of the ratchet like channel, where
the profile is a periodic repetition of a linear profile
ζ(x) = a + x for x ∈ [0, 1[, thus presenting disconti-
nuities at x = 0, 1, 2, .... We present in Fig. 6 the ex-
act numerical integration of the set of partial differential
equations (8)-(9)-(10) compared to our first order cor-
rection to Fick-Jacobs given by Eq. (3). We also show
here asymptotic results obtained by using the Kalinay
and Percus15 formula for a position-dependent coefficient
D(x) = arctan(R′(x))/R′(x) that is in principle exact in
the linearly expanding parts of the channel. Here there
are two possible procedures to apply the Lifson and Jack-
son formula18 to determine the diffusion constant: the
first where we ignore the discontinuity of the channel and
find

De

D0
' arctan ε

〈ζ〉〈ζ−1〉ε , (58)

which gives a correction to Fick-Jacobs result of order ε2

and is thus clearly incompatible with our exact results
(see Fig. 6). Secondly the vertical line at the end of the
channel between y = 1 + a and y = a can be replaced
by a straight line of finite slope between (1 − δ, 1 + a)
and (1, a), applying the Lifson-Jackson formula and then
taking the limit δ → 0. Following this procedure leads
to31

De

D0
=

1

〈ζ〉〈ζ−1〉
(

2
π ε+ ε

arctan ε

) . (59)

Interestingly, this result includes a correction of order ε,
but with a prefactor that disagrees with the exact result
Eq. (3). This is not surprising since the arctangent for-
mula for D(x) is obtained by neglecting all high-order
derivatives of R(x) in the expansion series, whereas such
terms are infinite at the discontinuity. Hence, our ap-
proach provides more precise results for this kind of chan-
nels, even if it does not include the effect of higher order
terms in the ε expansion.

V. EFFECTIVE TRAPPING RATES

A widely used approach to deal with discontinuous
channels is the use of the boundary homogenization
method32,33,41–43. In this class of approaches, one as-
sumes that one can define a one dimensional stochas-
tic dynamics for x(t), with associated probability density
function p(x, t) that satisfies a diffusion equation in the
smooth part of the channel. The presence of discontinu-
ities is taken into account by introducing trapping rates
κ± in the flux continuity equation

−D0∂xp|x=0+ = −D0∂xp|x=0− = κ−px=0− − κ+px=0+ .
(60)
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FIG. 6. Effective diffusivity of the ratchet channel ζ(x) =
0.25 + x. The dots correspond to the numerical solution
of the partial differential equations Eqs. (8)-(9)-(10), the
straight line represents the first order correction to FJ given
by Eqs. (3)-(4). We also show results obtained by using the
partially resumed formula for D(x) given in Ref.15 (dashed
line: Eq.(58), dash-dotted line: Eq. (59), see text).
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FIG. 7. Trapping rate κwRw/D0 as a function of ν = Rn/Rw.
Our theory (continuous black line) is compared to expressions
for trapping rates proposed in Ref.40, obtained by the con-
stant flux approximation [CFA, Eq. (67), dashed red line] or
interpolation [interp, Eq. (68), green dotted line]. In inset,
we compare the ratio of trapping rates for the discontinuities
and for compartmentalized channels, which is found to differ
from unity.

Roughly speaking, κ− quantifies the likelihood, for a par-
ticle on one side of the discontinuity, to cross it (and thus
be re-injected on the other side of it). The ratio of trap-
ping rates can be deduced from detailed balance (here in
the two-dimensional case)

κ+

κ−
=
ζ−

ζ+
. (61)

Here we show that our approach is compatible with the
concept of trapping rates, and that it provides a means

to determine them exactly in the limit ε → 0. Consider
first the case of a channel formed by wide (w) and narrow
(n) portions of constant radius Rw, Rn and length lw, ln,
with L = ln + lw. One introduces two kinds of trapping
rates: κw quantifying the transitions from the wide to the
narrow portions, and conversely κn that quantifies the
transitions from the narrow to the wide portions. The
effective diffusivity in such channels reads (see Eq. (31)
of Ref.41)

De =
D0L

2

l2n + l2w + lnlw

(
κw

κn
+ κn

κw

)
+ 2D0

(
ln
κn

+ lw
κw

) .
(62)

Using the detailed balance condition (61), we find that
the above formula simplifies to

De =
D0

〈R〉〈R−1〉+ 2D0

RwκwL
〈R〉

, (63)

and in the weakly varying limit we obtain

De '
D0

〈R〉〈R−1〉

(
1− 2D0

Rwκw〈R−1〉L +O(ε2)

)
. (64)

For the same channel, our approach leads to

De '
D0

〈R〉〈R−1〉

(
1− 2

µd
L〈R−1〉 +O(ε2)

)
. (65)

where the factor 2 comes from the fact that they are two
discontinuities per channel period. Comparing the above
formulas gives

Rwκw
D0

=
Rnκn
D0

=
1

µd
. (66)

The above formula suggests that asymptotically exact
results for the trapping rates are obtained from our anal-
ysis.

In the boundary homogenization method, trapping
rates are usually determined by considering the flux of
particles on a surface presenting sticky patches. Al-
though in most cases this method is applied to the three
dimensional case, it is interesting to test its validity in the
present two-dimensional situation. The corresponding
problem is that of particles diffusing to a surface present-
ing straight strips. Two different approximate formulas40

were proposed for the trapping rate, the first one in the
constant flux approximation (CFA) leads to

Rwκ
(cfa)
w

D0
' 1

2ν

π3ν3∑∞
n=1(1/n3) sin2(πnν)

, (67)

where ν = Rn/Rw. In Ref.40, another (interpolation)
formula is proposed

Rwκ
(interp)
w

D0
' π

2(1− ν)2 ln(2.6 + 0.7/ν)
. (68)
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It is interesting to compare these approximate values of
the trapping rates with our exact calculation. We see
on Fig. 7 that the three formulas give similar values for
κw. For ν → 0, all expressions of κw have the same
dominant behavior 1/ ln ν, given by Eq. (57) for our exact
value. They however differ for finite values of ν, which is
quantified by our approach.

Next, in the case of channels made of a periodic ar-
rangement of compartments of constant radius Rw and
length L, separated by infinitely thin walls, with open-
ings of radius Rn, we call κc the trapping rate (which
is usually called the permeability P ), and the effective
diffusivity reads43

De =
D0

1 +D0/(κcL)
' D0

(
1− D0

κcL

)
, (69)

which leads to

κcRw
D0

=
1

µc
. (70)

In the literature43 it is suggested that κc ' κw/2, since
a particle that is exactly between the two compartments
can switch with equal probability on each side. However,
our theory clearly shows that such an argument is only
an approximation: on the inset of Fig. 7, we see that the
exact ratio of 2κc/κd, which in our theory is given by
2µd/µc, is clearly different from unity.

VI. CONCLUSION

Let us now summarize our findings. We have calcu-
lated the effective diffusivity of non-interacting tracer
particles diffusing in symmetric channels of non-uniform
radius presenting singularities. In such channels, the
usual Fick-Jacobs’ (FJ) approach is valid at lowest or-
der only and provides only a rough approximation of the
diffusion coefficient. This is in contrast to smooth chan-
nels, where the FJ theory can be systematically improved
by taking into account higher order terms of the param-
eter ε, which measures the ratio of equilibration time in
the lateral and axial directions. Here, we have identified
the next-to-leading order term for the Fick-Jacobs’ ap-
proach in two-dimensional discontinuous channels. We
found that each discontinuity gives rise to an additive
negative correction to the diffusion constant. This is
compatible with modeling of discontinuities in terms of
localized trapping rates. Our theory enables us to iden-
tify exact expressions of these trapping rates (by requir-
ing that their use leads to asymptotically to the exact
expressions of the diffusivity obtained here). The ap-
proach here provides explicit expressions for these trap-
ping rates in terms of the geometrical parameters of the
discontinuity. Here we have considered two types of dis-
continuities: (i) the case of an abrupt change of radius,
and (ii) the presence of thin walls with small opening that
separate the channel into compartments. Our formalism

could however be used to explore dispersion properties
for other singularities, and can also be extended to the
case of three dimensional channels. Our results help in
precisely quantifying the concepts of kinetic entropic bar-
riers associated with profile singularities.

Appendix A: Calculation of the functions Fi

Here we describe how to calculate the functions
F0, F1, ... appearing in the expansion (16). At order ε0

and ε1, Eq. (14) becomes

∂2
Y F0 = ∂2

Y F1 = 0 (A1)

in the bulk, and the boundary conditions read

∂Y F0|Y=ζ(X) = ∂Y F1|Y=ζ(X) = 0, (A2)

∂Y F0|Y=0 = ∂Y F1|Y=0 = 0. (A3)

We thus deduce that the functions F0 and F1 do not
depend on Y , and we denote them by F0(X) and F1(X).
Examining the O(ε2) terms in (14) yields

∂2
Y F2(X,Y ) + F ′′0 (X) = 0. (A4)

Integrating this equation with respect to Y , and using
∂Y F2|Y=0 = 0 yields

∂Y F2(X,Y ) = −F ′′0 (X)Y. (A5)

Now, expanding Eq. (15) at order ε2 enables us to iden-
tify the boundary condition for F2 as

∂Y F2|Y=ζ(X) = ζ ′(X)[F ′0(X)− 1], (A6)

which can be inserted into Eq. (A5), yielding

ζ ′(X)[F ′0(X)− 1] = −F ′′0 (X)ζ(X). (A7)

The solutions to this equation are of the form

F ′0(X) = 1− λ0

ζ(X)
, (A8)

where λ0 is, so far, an undetermined constant. We can
proceed further by anticipating here that F0 is a continu-
ous function at X = 0 (modulo 1). Such property can be
justified by considering the matching condition with the
solution in the inner region (see the next section), and it
is also justified since we do not expect that the disconti-
nuity of the profile modifies the leading order term of the
FJ approximation. With this assumption, the periodicity
implies that λ0 = 〈ζ−1〉−1 and thus

F ′0(X) = 1− 1

〈ζ−1〉ζ(X)
. (A9)

which is Eq. (17).
Now, expanding at order ε3 the equations for F yields

∂2
Y F3 + F ′′1 (X) = 0, (A10)

∂Y F3|Y=ζ(X) = ζ ′(X)F ′1(X). (A11)
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Integrating Eq. (A10) and using ∂Y F3|Y=0 = 0 yields
∂Y F3(X,Y ) = −F ′′1 (X)Y , comparing to Eq. (A11) we
obtain

ζ ′(X)F ′1(X) = −F ′′1 (X)ζ(X). (A12)

The solutions of this equation are of the form

F ′1(X) =
λ1

ζ(X)
. (A13)

where λ1 is a constant. Note that λ1 is related to the
difference of the values on each side of the profile discon-
tinuity by

λ1 =
F1(1−)− F1(0+)

〈ζ−1〉 =
F1(0−)− F1(0+)

〈ζ−1〉 , (A14)

where we have used the periodicity of F in the second
equality. F ′1 is thus given by

F ′1(X) =
F1(0−)− F1(0+)

〈ζ−1〉ζ(X)
. (A15)

which is exactly Eq. (18).

Appendix B: Details on conformal maps

According to the rules of the Schwarz Christoffel
mapping44, the complex derivative of the mapping x̃ =
Wd(Ω) in the case of a discontinuous channel (Fig. 3a) is
of the form

W ′d(Ω) = K0

√
Ω− 1

Ω
√

Ω− k
, (B1)

where K0 and k are constants to be determined below.
Integrating the above expression yields

Wd(Ω) =K0

{
arccosh

[
2Ω− (k + 1)

k − 1

]

− 1√
k

arccosh

[
(k + 1)Ω− 2k

(k − 1)Ω

]}
+K1. (B2)

The conditions that Wd(1) = iζ+, Wd(k) = iζ− and
Im Wd(0

−) = 0 then fix the values of k, K0 and K1, and
we find

√
k =

ζ−

ζ+
,K1 = iζ−, K0 = −ζ

−

π
. (B3)

In the case of compartmentalized channels (Fig. 3b), we
look for a mapping of the form

W ′c(Ω) = K0
Ω− 1

Ω
√

(Ω− k)(Ω− k̃)
. (B4)

Integrating leads to

Wc(Ω) =− 2K0

[
1√
kk̃

ln


√
k(Ω− k̃) +

√
k̃(Ω− k)√

(k − k̃)Ω


− ln

(√
Ω− k +

√
Ω− k̃

)]
+K1. (B5)

The conditions Wc(1) = iζ0, Wc(k) = Wc(k̃) = iζ− and

Im Wc(0
−) = 0 then determine the values of k, k̃, K0

and K1; we find

k =
1

k̃
= cotan2 πζ0

4ζ−
, K0 = −ζ

−

π
, (B6)

K1 = iζ− +
ζ−

π
ln(k − 1/k). (B7)

Appendix C: Calculations for weakly varying
discontinuous-compartmentalized channels

Here we describe the calculations leading to the result
(54), for channels partially obstructed by walls at a given
position x = 0 and with a discontinuity of the radius be-
tween the negative (before the wall) and positive (after
the wall) regions. The notations are those of Fig. 3c. As
in the case of a discontinuous channel, we distinguish be-
tween an inner and an outer region. In the outer region,
the analysis is exactly the same, and the auxiliary func-
tion satisfies Eqs. (17) and (18). In the inner region, the
function f has the same structure, φ(x̃, ỹ) = f(x, y) − x
(with the same definition of the coordinates in the bound-
ary layer). The matching condition given by Eq. (24) is
still satisfied.

The function φ1 satisfies Laplace’s equation in the do-
main drawn in Fig. 3c, with Neumann conditions at the
channel boundaries and at the centerline. We apply again
the Schwarz-Christoffel method to find a conformal map-
ping enabling to solve for φ1. We find from the expression
(B5) that

Wdc(Ω) =
2ζ−

π

[
1√
kk̃

ln


√
k(Ω− k̃) +

√
k̃(Ω− k)√

(k − k̃)Ω


− ln

(√
Ω− k +

√
Ω− k̃√

k − k̃

)]
+ iζ−, (C1)

Here, the parameters k and k̃ are chosen such that
Wdc(k̃) = iζ+, Wdc(k) = iζ−, Wdc(1) = iζ0 while the
image of negative real axis is the centerline of the chan-
nel and the image of the positive real axis is the channel



12

boundary (Fig. 3c). This leads to the system

kk̃ =

(
ζ−

ζ+

)2

, (C2)

π

2

(
ζ0
ζ−
− 1

)
=

1√
kk̃

arctan

√
k̃(k − 1)

k(1− k̃)
− arctan

√
k − 1

1− k̃
.

(C3)

Following the same reasoning as before, we can express
φ1 as a function of the complex variable Ω, following the
Eq. (28). We can thus deduce the jump for F1 from
these expressions, by inverting explicitly the mapping
x̃ = Re Wdc(Ω) for x̃→ −∞ (or, equivalently, |Ω| → ∞)
where

x̃ '
|Ω|→∞

ζ−

π

[
1√
kk̃

ln

√
k +

√
k̃

√
k −

√
k̃
− ln

4|Ω|
k − k̃

]
, (C4)

and for x̃→ +∞ (or, equivalently, small |Ω|), for which

x̃ '
|Ω|→0

ζ−

π

[
1√
kk̃

ln
4kk̃

(k − k̃)Ω
− ln

√
k +

√
k̃

√
k −

√
k̃

]
. (C5)

Comparing these expressions with Eq. (24) we identify
the jump of the function F1,

F1(0−)− F1(0+) =

1

π〈ζ−1〉

[
1 + kk̃√

kk̃
ln

√
k +

√
k̃

√
k −

√
k̃
− 2 ln

4
√
kk̃

k − k̃

]
. (C6)

We can check that Eq. (41) still holds here, and we finally
obtain Eq.(54).

Appendix D: Comparison with the Kalinay Percus approach

Here we control that our approach is consistent with
the results of Kalinay and Percus24, who mapped the dy-
namics of x(t) on a one-dimensional diffusive dynamics,
whose diffusion coefficient at the vicinity of a discontinu-
ity at x = 0 reads

D0

D(x)
= R(x)

d

dx

x+ CtΘ(x) + C0

R(x)
(D1)

where Ct and C0 depend on ζ±. Let us recall here the
Lifson-Jackson18 formula which provides the effective dif-
fusivity for one-dimensional particles with diffusion coef-
ficient D(x) moving in two-dimensional channels:

De =
1

〈R〉〈[D(x)R(x)]−1〉 . (D2)

If we insert (D1) into the above expression, we see that
for a periodic channel, made of flat portions with radii

Rw and Rn for respectively wide and narrow regions (as
in Sec. V), we obtain

De =
D0

〈R〉〈R−1〉+ 2
(
Ct+C0

Rn
− C0

Rw

)
〈R〉

. (D3)

This formula is compatible with Eq. (63) for an inverse
trapping rate equal to

D0

Rwκw
=
Ct + C0

Rn
− C0

Rw
. (D4)

From the Eq. (66), we can thus identify

µd

(
Rn
Rw

)
=

(
Ct + C0

Rn
− C0

Rw

)
. (D5)

The values of Ct and C0 are given by Kalinay and
Percus24 for the radii Rn = π/2 and Rw = π, yielding
Ct = 1.21640 and C0 = −1.64792. This leads to the value
of the inverse of trapping rate D0/(Rwκw) ' 0.2498. For
ν = Rn/Rw = 0.5, our approach gives D0/(Rwκw) =
µd(ν = 0.5) ' 0.2498. Our result is thus compatible
with that of Kalinay and Percus24 for ν = 0.5.
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