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Natural flocks need to cope with various forms of heterogeneities, for instance, their composition, motility,
interaction, or environmental factors. Here, we study the effects of such heterogeneities on the flocking dynam-
ics of the reciprocal two-species Vicsek model [Phys. Rev. E 107, 024607 (2023)], which comprises two groups
of self-propelled agents with anti-aligning inter-species interactions and exhibits either parallel or anti-parallel
flocking states. The parallel and anti-parallel flocking states vanish upon reducing the size of one group, and the
system transitions to a single-species flock of the majority species. At sufficiently low noise (or high density),
the minority species can exhibit collective behavior, anti-aligning with the liquid state of the majority species.
Unequal self-propulsion speeds of the two species strongly encourage anti-parallel flocking over parallel flock-
ing. However, when activity landscapes with region-dependent motilities are introduced, parallel flocking is
retained if the faster region is given more space, highlighting the role of environmental constraints. Under noise
heterogeneity, the colder species (subjected to lower noise) attain higher band velocity compared to the hotter
one, temporarily disrupting any parallel flocking, which is subsequently restored. These findings collectively
reveal how different forms of heterogeneity, both intrinsic and environmental, can qualitatively reshape flocking
behavior in this class of reciprocal two-species models.

I. INTRODUCTION

Flocking is ubiquitous in nature [1] and denotes the tran-
sition of self-propelled, mutually aligning agents to coherent
motion in one common direction. This collective behavior of
active matter emerges in human gatherings [2], mammalian
herds [3], bird flocks [4], and fish schools [5], to microscopic
systems including unicellular organisms like bacteria [6], col-
lective cell migration in dense tissues [7], and cytoskeletal fil-
aments driven by molecular motors [8]. Beyond living sys-
tems, flocking has also been experimentally realized in syn-
thetic active colloids [9, 10] and in vibrated polar disks [11].

The Vicsek model (VM) [12] is a paradigmatic frame-
work for studying flocking in active matter systems. It de-
scribes the dynamics of self-propelled particles moving in
two dimensions with constant speed and aligning their ve-
locities with those of their neighbors within a specified in-
teraction radius, subject to random noise. Despite its sim-
plicity, the model captures the essence of flocking behav-
ior, where individual particles transition from disordered mo-
tion to coherent, collective movement as the noise level de-
creases or the density increases. The VM exhibits long-
range order (LRO) [13, 14], and this emergence of order in
two-dimensional systems is particularly striking because it
seemingly violates the Mermin-Wagner theorem, which pro-
hibits the spontaneous breaking of continuous symmetries in
two-dimensional equilibrium systems with short-range inter-
actions at finite temperature. The apparent violation arises
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from the non-equilibrium active nature of the VM, where the
constant input of energy at the particle level drives the system
far from equilibrium. The presence of LRO in the VM is fur-
ther supported by giant number fluctuations [15], which are a
hallmark of active matter systems and emphasize their funda-
mental departure from equilibrium statistical mechanics.

Recently, there has been a growing interest in understand-
ing active systems composed of multiple particle species with
inter-species reciprocal and non-reciprocal interactions [16–
24]. In Ref. [19], the flocking dynamics of two unfriendly
species has been investigated in the framework of the two-
species Vicsek model (TSVM), which is a two-species gener-
alization of the VM with reciprocal anti-ferromagnetic inter-
species interactions. The reciprocal TSVM exhibits two pri-
mary steady states of collective motion: the anti-parallel
flocking (APF) state, where the two species form bands mov-
ing in opposite directions, and the parallel flocking (PF) state,
where the bands travel in the same direction. In the low-
density and high-noise region of the coexistence phase, PF
and APF states undergo fluctuation-induced stochastic transi-
tions, with the transition frequency decreasing as the system
size increases. At higher densities and lower noise levels, the
PF state disappears, leaving the APF state as the sole ordered
liquid phase. In contrast, when the inter-species interaction is
non-reciprocal, instead of parallel and anti-parallel flocking,
the system exhibits chiral motion [17].

Natural environments are inherently heterogeneous, where
multi-species swarms resemble moving ecosystems [25], and
this heterogeneity in mixed populations influences dynamics
across scales. Heterogeneity is a natural feature of collective
behavior and exists even within a single species due to indi-
vidual behavioral differences. Examples range from individ-
ual fish adjusting their behavior in groups [26] to the effect of
cell aspect ratio on swarming bacteria [27, 28]. The influence
of such individual-level heterogeneity on collective behavior
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gets further amplified in multi-species systems, where inter-
species differences introduce additional complexity. For in-
stance, the ratio of two swarming bacterial species populations
has been found to influence dynamics at all scales, from the
microscopic speed distribution to mesoscopic vortex sizes and
macroscopic colony structure [29]. In mixed-species bacterial
swarms, the population ratio can also dictate local segrega-
tion [30]. Further examples of heterogeneous systems of self-
propelled agents include agents with varying motility [31–
35], diffusivity [36], responsiveness to external cues [37],
interparticle and inter-species interactions [38, 39], tempo-
ral characteristics of the heterogeneity [40], and sensitivities
to external noise [41–43]. Environmental heterogeneity also
plays a pivotal role in shaping collective motion across di-
verse systems. Examples range from bacteria adapting to light
cues [44, 45] and active Brownian particles in spatially vary-
ing activity landscapes [46–48] to binary chiral particles un-
der complex environmental noise [49], run-and-tumble disks
driven through a random obstacle array [50] and self-trapping
of active particles in disordered media [51]. Remarkably,
topological flocking models maintain long-range order even
in spatially heterogeneous environments [52], in contrast to
their metric counterparts. These insights highlight the pro-
found role of heterogeneity in governing mesoscale dynamics
across natural and synthetic active matter systems.

Motivated by the importance of heterogeneities in multi-
species flocks, we consider in this paper the reciprocal
TSVM [19] with (a) population heterogeneity, where the two
species have different densities; (b) motility heterogeneity,
where particles of the two species differ in velocity; (c) spa-
tial heterogeneity or activity landscape, involving two spa-
tially segregated regions with counteracting motility hetero-
geneities, one species has a higher velocity in one region and a
lower velocity in the other; and (d) noise heterogeneity where
the two species experience different external noise. We aim
to investigate how these heterogeneities influence collective
motion and pattern formation in the system, particularly their
influence on the emergence and stability of the PF and APF
dynamical states. Note that, varying the interaction strengths
instead of density, velocity, or noise, one reaches a whole new
class of TSVM with completely different behavior [17], which
is not within the scope of the present study.

II. MODEL

Consider NA(NB) point-like self-propelled particles of
species A (B) in a two-dimensional geometry of dimension
Lx×Ly with periodic boundary conditions. The total number
of particles is then N = NA + NB. The position and orien-
tation vectors associated with each particle are rti = (xt

i, y
t
i)

and σt
i = (cos θti , sin θ

t
i) respectively, where θti ∈ [−π, π]

is the orientation angle representing the self-propulsion direc-
tion of the particle. A static Ising-like spin variable, si = ±1
is used to define the species of the particle, si = +1 for A
particles and si = −1 for B particles. Particles belonging
to species A and B move with a constant speed vA and vB,
respectively, in the direction of σi.

Figure 1. (color online) Schematic of the different heterogeneities ap-
plied on the TSVM. Particles of species A (B) are represented by red
(blue) balls. (a) Population heterogeneity: NA ̸= NB with vA = vB
and ηA = ηB; (b) Motility heterogeneity: vA ̸= vB with NA = NB

and ηA = ηB; (c) Spatial heterogeneity: vA > vB in left region and
vA < vB in right region, where the dotted line represents the inter-
region interface, NA = NB and ηA = ηB; (d) Noise heterogeneity:
ηA ̸= ηB with NA = NB and vA = vB, i.e. the red particles experi-
ence a higher noise amplitude (a “hotter” environment) compared to
the blue particles (a “colder” environment). In all subsequent snap-
shots, Lx and Ly represent horizontal and vertical system sizes, re-
spectively.

At each discrete time step ∆t, the ith particle interacts with
neighboring particles within a circular neighborhood of radius
R, denoted by Ni. Following these interactions, we obtain the
orientation vector of the ith particle as a spin-weighted sum
of orientation vectors of neighboring particles after time t:

σ̄t
i =

∑
j∈Ni

Jij σ
t
j∣∣∑

j∈Ni
Jij σt

j

∣∣ (1)

where Jij = sisj is the exchange coupling between the
particles i and j. Jij = 1 signifies an intra-species ferro-
magnetic interaction whereas Jij = −1 signifies inter-species
anti-ferromagnetic interaction. Thus, the orientation angle of
the ith particle after time t gets updated in the following way:

θt+∆t
i = arg

(
σ̄t
i

)
+ ηi ξ

t
i , (2)

where ξti is a scalar noise uniformly distributed in [−π, π]
and uncorrelated for all sites and times: ⟨ξti⟩ = 0, and
⟨ξtiξsj ⟩ ∼ δtsδij , and ηi is the parameter controlling the noise
strength. ηi = ηA for A particles and ηi = ηB for B particles.

On the other hand, considering that orientation vector at
time t+∆t will be σt+∆t

i , the position update of the ith par-
ticle after time t is given by:

rt+∆t
i = rti + viσ

t+∆t
i ∆t , (3)

with vi = vA for A particles and vi = vB for B particles.
The model parameters include the species densities ρs =

Ns/LxLy (for s ∈ {A,B}), the noise strengths ηs, and the
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velocity moduli vs. For simplicity, we consider the follow-
ing when these parameters are uniform across species: if all
particles share the same speed, we set vA = vB = v0, if the
noise strengths are identical, we take ηA = ηB = η, and if the
species densities are equal, we define ρA = ρB = ρ/2, where
ρ = N/LxLy is the total particle number density of the sys-
tem. We mostly consider a rectangular simulation box of high
aspect ratio Lx/Ly = 8, R = 1, and ∆t = 1, unless stated
otherwise.

III. SIMULATION DETAILS

Assigning random initial positions and orientations to the
particles, numerical simulations of the stochastic process are
performed with parallel updates of orientations and positions
of the N particles. The system evolves under three control
parameters: average particle density, external noise, and par-
ticle velocity. After initialization, we equilibrate the system
for teq = 105 and then measure various quantities until the
maximum simulation time, tmax = 106.

The TSVM [19] typically exhibits three phases: a low-
density, high-noise gas phase, a low-noise, high-density liq-
uid phase, and an intermediate liquid-gas coexistence region
which can further be classified into two categories: (i) PF
or “parallel flocking” state where bands of two species move
in the same direction and (ii) APF or “anti-parallel flocking”
state where A and B bands move in the opposite direction. To
characterize the collective motion of the A and B species, the
following order parameters are introduced [19]:

vt
+ =

1

NA

∑
i∈A

σt
i , vt

− =
1

NB

∑
i∈B

σt
i . (4)

Let v± = |vt
±|, then ⟨v±⟩ are the flocking order parameters,

where ⟨(...)⟩ denotes the steady state time average and the
ensemble average over independent runs. The PF and APF
states are distinguished by:

vt
s =

1

N

N∑
i=1

σt
i =

1

N

[
NAv

t
+ + NBv

t
−
]
, (5a)

vt
a =

1

N

N∑
i=1

stiσ
t
i =

1

N

[
NAv

t
+ − NBv

t
−
]
. (5b)

Using vs(a) = |vt
s(a)| from Eqs. (5), ⟨vs⟩ and ⟨va⟩ are defined

as the order parameters of the PF and APF states, respectively.
In the thermodynamic limit, ⟨vs⟩ > 0 and ⟨va⟩ = 0 in the PF
state and ⟨vs⟩ = 0 and ⟨va⟩ > 0 in the APF state.

IV. RESULTS

In this section, we present numerical results of the TSVM
under the following heterogeneities:

A. Population heterogeneity where NA ̸= NB but all parti-
cles move with the same velocity v0 and experience the same
noise η.

B. Motility heterogeneity where equal population (NA =
NB) of A and B species respectively move with velocities vA
and vB (vA ̸= vB) under the same external noise η.

C. Spatial heterogeneity where particle velocities are space-
dependent. In one region of the simulation box, A moves
faster than B (vA > vB), but in the other region, B has
the greater velocity (vA < vB). Here also NA = NB and
ηA = ηB = η.

D. Noise heterogeneity where one species is subjected to
higher noise, analogous to a hotter environment while the
other experiences a markedly reduced noise level, mimicking
a colder regime, ηA ̸= ηB withNA = NB and vA = vB = v0.

A. Population heterogeneity

First, we consider the TSVM with different populations of
the two species, i.e., NA ̸= NB. The strength of the hetero-
geneity is characterized by m0 = (NA − NB)/N , and with-
out any loss of generality, we only consider m0 > 0. Fig. 2
shows the steady-state snapshots of the TSVM at t = 106

and for increasing m0, where the species with a greater pop-
ulation (here, A) exhibit more traveling high-density liquid
bands than those with a lesser population (here, B). As m0

increases, species B eventually fails to form any bands due to
an insufficient number of particles and forms a solo gaseous
state of B-particles for m0 ≥ 0.6. For the sake of generality,
from now on, we will refer to species A (NA ≥ NB) as the
majority species and species B as the minority species. The
system thus displays a transition from a PF state at m0 = 0
to a majority-species dominated single-species flocking (SSF)
state characteristic of the VM [15] at m0 = 0.8.

It is important to highlight that the microphase-separated
band configurations displayed in Fig. 2 correspond to stable
steady states that persist over long time scales. For each value
of m0, once the system undergoes phase separation, both the
number and the form of the bands remain essentially constant,
with no observable change up to times of at least t = 107 (see
Appendix A). This indicates that the system undergoes min-
imal, if any, coarsening after the initial formation of bands.
Although the resulting structures may resemble smectic or-
der due to the apparent regularity in band spacing, signif-
icant fluctuations in inter-band distances preclude any sus-
tained long-range translational order. Similar to the standard
Vicsek model (VM), the TSVM displays giant number fluc-
tuations (GNF) [19], which are fundamentally incompatible
with smectic order [54, 55]. These fluctuations disrupt crys-
talline arrangements and inhibit translational symmetry break-
ing. Consequently, even if quasi-periodic band spacing may
appear over certain time intervals or regions, the system re-
tains a dynamic, fluctuating banded structure rather than form-
ing a true smectic or crystalline phase (see Appendix A).

In Fig. 3, we present the probability distribution P (va, vs)
for increasing m0 constructed from the steady state time series
of vs(a) = |vt

s(a)| across several independent realizations. For
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Figure 2. (color online) Steady-state snapshots for varying popula-
tion heterogeneity. Particles of species A (B) are represented with red
(blue) dots, and a local particle density is color-coded according to
the color bar. (a) The homogeneous TSVM features an equal number
of bands for A and B species. (b–c) The band number of species B
decreases with increasing m0. (d–e) B-particles can not form bands
due to scarcity in numbers. Parameters: ρ = 1, η = 0.3, v0 = 0.5,
Lx = 800, and Ly = 100. A movie (movie1) of the same can be
found at Ref. [53].

m0 = 0 [Fig. 3(a)], we observe a two-peak structure charac-
teristic of the homogeneous TSVM, indicating the coexistence
of PF (vs > va) and APF (va > vs) states, with fluctuation-
induced stochastic switching between these dynamical states
in the steady state [19]. However, as m0 increases, the peaks
gradually converge [Fig. 3(b–e)] until they merge into a sin-
gle peak [Fig. 3(f–i)], signaling the collapse of the PF and
APF states into an SSF state with vs ∼ va.

To characterize the behavior of the PF and APF states sepa-
rately with m0, in Fig. 4, we measure the time-averaged order
parameters ⟨vs⟩ and ⟨va⟩, averaging only over the ensemble
defined by va ≤ vs or only over the ensemble defined by
va ≥ vs. Fig. 4(a) shows that ⟨va⟩ increases monotonically
with m0 in the former, and the system is in a PF state, while
it remains nearly constant in the latter, where APF behavior
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Figure 3. (color online) Probability distribution P (vs, va) for vary-
ing population heterogeneity. (a) Representation of the homoge-
neous TSVM (NA = NB) exhibiting stochastic switching between
the PF and APF states. (b–i) The two peaks progressively converge
as m0 increases, signifying a collapse into a single state. Parameters:
ρ = 0.5, η = 0.24, v0 = 0.5, Lx = 256, and Ly = 32. A movie
(Movie S1) of the same can be found at Ref. [56].

dominates. Conversely, Fig. 4(b) shows the opposite trend for
⟨vs⟩. The emerging general picture is that the order param-
eter (e.g., ⟨vs⟩) associated with the less prevalent dynamical
state (e.g., PF behavior in the va ≥ vs ensemble) approaches
that of the dominant state (e.g., ⟨va⟩ representing APF behav-
ior in the same ensemble) as the population heterogeneity m0

increases. This convergence signifies a collapse into a single
state near m0 ∼ 1, corresponding to the VM limit. In the pure
VM limit, vs and va are equivalent (vs ≃ va), and the sys-
tem can be described by a single Vicsek order parameter [12].
Note that the PF and APF dynamical states are only meaning-
ful when both species form well-defined high-density liquid
bands that move either parallel or anti-parallel to each other.
When one species becomes significantly more abundant than
the other, the concept breaks down, as the minority species
can no longer form bands.

To understand the results shown in Fig. 4, let us consider
the time-averaged order parameters presented in Eqs. (5):

⟨vs⟩ =
1 +m0

2
⟨v+⟩+

1−m0

2
⟨v−⟩ ≡ mA +mB, (6a)

⟨va⟩ =
1 +m0

2
⟨v+⟩ −

1−m0

2
⟨v−⟩ ≡ mA −mB, (6b)

where mA and mB are the average magnetization vectors of
species A and B, respectively. If species s creates a band in
the coexistence region then ρgas ≤ ρs ≤ ρliq, where ρgas and
ρliq are respectively the gas and liquid binodal densities of a
single species, with a liquid fraction (of species s) defined by

ϕs =
ρs − ρgas
ρliq − ρgas

. (7)
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Figure 4. (color online) Order parameters for population hetero-
geneity. ⟨va⟩ and ⟨vs⟩ are shown in the restricted APF (blue squares),
PF (red circles), and SSF (black stars) ensembles for varying m0. (a)
⟨va⟩ remains relatively constant in the APF ensemble but increases
monotonically in the PF ensemble. (b) ⟨vs⟩ increases monotonically
in the APF ensemble while remaining relatively constant in the PF
ensemble. Parameters: ρ = 0.5, η = 0.24, v0 = 0.5, Lx = 256,
and Ly = 32.

Let mliq be the magnetization of the liquid phase, related
to ρliq and independent of the total density ρ. Hence, one can
express the modulus of the individual species magnetizations
as ms = mliqϕs. However, the species s stops flocking when
ρs < ρgas, meaning that one of the two species remains in the
gas phase when m0 > 1−2ρgas/ρ. Moreover, we can deduce
that the system is in the gas phase when ρ < 2ρgas/(1+m0),
and in the SSF state when

2ρgas
1 +m0

< ρ <
2ρgas
1−m0

. (8)

For m0 < 1 − 2ρgas/ρ, species A and B are either in a PF
or an APF state. For a PF state, the magnetization vectors mA

and mB are parallel, then Eqs. (6) can be rewritten as

⟨vs⟩ = mA +mB = mliq
ρ− 2ρgas
ρliq − ρgas

, (9a)

⟨va⟩ = |mA −mB| = mliq
ρm0

ρliq − ρgas
, (9b)

using the expression of ϕs from Eq. (7). This implies that ⟨vs⟩
is independent of species fraction m0 [see Fig. 4(b)], whereas
⟨va⟩ linearly increases with m0 [see Fig. 4(a)].

Similarly, for the APF state, where the magnetization vec-
tors mA and mB are anti-parallel, one can show that

⟨vs⟩ = |mA −mB| = mliq
ρm0

ρliq − ρgas
, (10a)

⟨va⟩ = mA +mB = mliq
ρ− 2ρgas
ρliq − ρgas

. (10b)

This implies that ⟨vs⟩ linearly increases with m0 [see
Fig. 4(b)] and ⟨va⟩ remains constant [see Fig. 4(a)].

For m0 > 1 − 2ρgas/ρ, species A (majority species) form
bands while species B (minority species) enters the gas phase

(a)

(b)

0.1 0.2 0.3 0.4 0.5
η

0

0.2

0.4

0.6

0.8

1

〈v
±
〉

(c)

〈v+〉
〈v−〉

Figure 5. (color online) Single species and both species flocking at
large population heterogeneity. Snapshots of (a) SSF (η = 0.45) and
(b) flocking of both species in an APF state (η = 0.2) are shown for
a 20×10 section of a 800×100 simulation box. Red and blue arrows
represent the orientation of A and B particles, respectively. (c) The
time- and ensemble-averaged order parameters ⟨v±⟩ as a function
of η; Lx = 256, Ly = 32. Parameters: ρ = 2, v0 = 0.5, and
m0 = 0.9.

(ρB < ρgas) implying mB = 0. Then, rewriting Eqs. (6)
using the expression of ϕA in Eq. (7) we obtain:

⟨vs⟩ = ⟨va⟩ =
mliq

2

(
ρm0

ρliq − ρgas
+

ρ− 2ρgas
ρliq − ρgas

)
. (11)

Thus, at large m0 values, both ⟨vs⟩ and ⟨va⟩ vary in an affine
manner with m0, as shown in Fig. 4.

However, at high m0, it is crucial to understand its effect
on the collective dynamics of the minority species. At higher
noise (η = 0.45), the minority species transitions into a dis-
ordered gaseous state due to its low density, while the major-
ity species forms flocking bands [see Fig. 5(a)]. This defines
the single-species flocking (SSF) state, analogous to the VM
flocking behavior. At lower noise (η = 0.2), the minority
species, although it cannot form bands as its density remains
below ρgas, now exhibits a directed motion where both species
flock in an APF state [see Fig. 5(b)]. In this state, the ma-
jority species generally remain in the liquid state due to low
noise, while the minority species anti-aligns with the major-
ity species due to the reciprocal anti-ferromagnetic interaction
and forms an APF state. To further examine the impact of η
on the collective dynamics of the majority (A) and minority
(B) species under strong heterogeneity (m0 = 0.9), we plot
the corresponding order parameters, ⟨v+⟩ and ⟨v−⟩, against η
in Fig. 5(c). At higher noise (η ≳ 0.3), ⟨v−⟩ decays more
sharply than ⟨v+⟩ due to the much lower density of species B,
signifying the SSF state. For lower η, although ⟨v−⟩ < ⟨v+⟩,
the magnitude of ⟨v−⟩ indicates that B-particles also exhibit
an ordered state.

Fig. 6 presents the η − m0 and ρ − m0 phase diagrams,
constructed with the aid of snapshots, density profiles, and the
order parameters defined in Eq. (4). In Fig. 6(a), for low m0

values, we recover the phase behavior of the homogeneous
TSVM [19]. As m0 increases, reflecting greater population
heterogeneity, the majority species gathers enough particles
to form the SSF state (m0 > 0.3), at high noise levels, as
the minority species remains in a completely gaseous state.
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Figure 6. (color online) Phase diagrams for population heterogene-
ity. (a) η −m0 phase diagram for ρ = 2; (b) ρ−m0 phase diagram
for η = 0.3. For both cases, the velocity modulus is fixed (v0 = 0.5).
Alongside the homogeneous TSVM phases, a single-species flocking
state emerges. The boundary lines are included as visual guides.

As the noise is reduced, the threshold of m0 for the transition
between the PF+APF state and the SSF state increases, since
the minority species can now exhibit collective motion for a
smaller species density. At low noise (η ≲ 0.34), the minor-
ity species exhibit directed motion even at high heterogeneity
(m0 > 0.8) and form an APF liquid state.

In Fig. 6(b), the SSF state is observed roughly within the

range 0.5 ≲ ρ ≲ 1.5, inside an interval given by Eq. (8). At
a fixed m0, increasing ρ increases the density of both species,
allowing the minority species to form bands. Increasing ρ fur-
ther, we observe a transition from the PF+APF state to APF
coexistence, and eventually to the APF liquid, similar to the
behavior in the homogeneous TSVM. For strong heterogene-
ity, minority species band formation is less probable, and we
observe a direct transition from the SSF state to the APF liq-
uid state as ρ increases, as mentioned in Fig. 5. Note that,
depending upon the interplay of η and ρ, for intermediate m0,
the minority species can also form bands while the majority
species remain in a liquid state. Such a configuration is not
possible in the homogeneous TSVM [19].

In summary, strong population heterogeneity ultimately
eliminates the PF and APF states, leading to a single unified
flocking state (SSF) at high noise (or low density), where the
minority species remains in a disordered gas phase. However,
at low noise (or high density), the minority species continues
to exhibit directed motion, forming an APF-like liquid state.

B. Motility heterogeneity, or unfriendly “fast” and “slow”
particles

We next investigate the motility heterogeneity in the TSVM
by assigning different particle velocities to the two species
(vA ̸= vB). The key parameter of interest is the relative
velocity, ∆v = vA − vB. To maintain symmetry and reci-
procity, the velocity modulus of species B is kept constant,
vB = v0 = 0.5, while that of species A is varied within the
range vA ∈ [0, 1].

For ∆v = 0.3, the time evolution of such a system is pre-
sented in Fig. 7. We initialize the system in a PF state by
placing a band of high-velocity particles behind a band of
low-velocity particles [Fig. 7(a)] and then allow the system
to evolve. Over time, the faster band (species A, red) closes
the gap with the slower band (species B, blue) [Fig. 7(b)] and
eventually collides [Fig. 7(c)]. Upon collision, due to the anti-
alignment interaction between the species, the B-particles re-
verse direction, transitioning to an APF state [Fig. 7(d)]. As
the A-band penetrates the B-band, it gradually reverses the
orientation of the B-particles layer by layer. Consequently,
after the A-band fully passes through, the previously dense
B-band disperses. Notably, the A-band itself does not re-
verse, as the denser “head” of the band dominates the orienta-
tion update [Eq. (2)], impacting the minority B-particles more
than the majority A-particles within the interaction area. If
we express the alignment rule in Eq. (1) using the variable
αi ≡ siσi:

ᾱt
i =

∑
j∈Ni

s2i sjσ
t
j =

∑
j∈Ni

sjσ
t
j =

∑
j∈Ni

αt
j , (12)

regardless of species type, each particle aligns its α variable
with its neighbors. In the PF state, α vectors are anti-parallel
between species, leading to stability only when spatially sepa-
rated. Motility heterogeneity causes one band to overtake the
other (see Fig. 7), eliminating inter-species segregation and
transforming the PF state into the more stable APF state.
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Figure 7. (color online) Time-evolution with motility heterogeneity.
The flocking direction is indicated by black arrows. (a) Particles of
species A (red dots) and species B (blue dots) are shown, with local
particle density color-coded according to the color bar. (b–c) The
faster-moving A-band catches the B-band and collides. (d) Species
B reverses direction and forms an APF state. Parameters: ρ = 1,
η = 0.3, v0 = 0.5, ∆v = 0.3, Lx = 800, and Ly = 100. A movie
(movie2) of the same can be found at Ref. [53].

Starting from an APF state instead would result in the re-
tention of APF behavior because the APF order is stronger
than the PF order in TSVM [19] due to inter-species anti-
ferromagnetic interactions. In the APF state, α vectors
are parallel, allowing particles to perceive more “correctly
aligned” neighbors, reducing fluctuations. This highlights the
role of velocity asymmetry in driving the reorganization of the
bands, which leads to a persistent APF state in the coexistence
regime.

The probability distribution P (va, vs) in Fig. 8 clearly
demonstrates the dominance of the APF state as |∆v| in-
creases. Near the homogeneous TSVM limit (∆v ∼ 0), the
typical two-peak structure [Fig. 8(d–f)] is observed, indicating
stochastic PF-APF switching in the coexistence regime. For
|∆v| > 0.1, singular peaks emerge in the APF state region
[Fig. 8(a–c) and Fig. 8(g–i)], with the mean value of the va
order parameter increasing as vA increases [Fig. 8(g–i)]. The
remaining PF traits (vs ̸= 0) for |∆v| ∼ 0.1 [Fig. 8(c, g)]
suggest a transition from PF+APF to pure APF behavior as
the relative velocity ∆v increases.

Fig. 9(a–b) provides a quantitative analysis of the data pre-
sented in Fig. 8, illustrating the impact of motility heterogene-
ity on the stability of PF and APF states through the order
parameters ⟨vs⟩ and ⟨va⟩ as functions of ∆v. Near the ho-
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Figure 8. (color online) Probability distribution P (vs, va) for vary-
ing motility heterogeneity. (a-c, g-i) At high motility heterogeneity
(|∆v| > 0.1), only APF state remains. (e) Homogeneous TSVM
(∆v = 0), characterized by the stochastic switching between the PF
and APF states. (d, f) PF-APF stochastic switching with a stronger
APF for moderate heterogeneity. Parameters: ρ = 0.5, η = 0.24,
v0 = 0.5, Lx = 256, and Ly = 32. A movie (Movie S2) of the
same can be found at Ref. [56].

mogeneous TSVM limit (∆v = 0), in the PF-dominant en-
semble (va ≤ vs), unsurprisingly, the APF order parameter
⟨va⟩ exhibits a local minimum [Fig. 9(a)], while the PF order
parameter ⟨vs⟩ shows a local maximum [Fig. 9(b)]. Beyond
this region, as depicted in Fig. 8, the APF state prevails. In
the APF-dominant ensemble (va ≥ vs), conversely, ⟨va⟩ in-
creases with ∆v as the APF order gets stronger, whereas ⟨vs⟩
shows a decreasing trend. The local extrema in Fig. 9(a–b)
directly correspond to the stochastic PF-APF switching ob-
served in Fig. 8(d–f).

For motility heterogeneity, PF behavior emerges predom-
inantly near the homogeneous TSVM limit (∆v → 0).
Fig. 9(c–d) illustrates that this phenomenon is primarily
driven by the interaction between system noise (η) and par-
ticle density (ρ). We compute the probability of the PF state
pPF (pAPF = 1 − pPF), defined as the ratio of the time the
system remains in the PF state (tPF) to the total time (t) af-
ter reaching a steady state at time teq: pPF = tPF/t where
t = tmax − teq. The system is considered to be in the PF
state when vs > va. In Fig 9(c), pPF is plotted against
∆v ∈ [−0.2, 0.2] for several values of η, keeping ρ = 2 con-
stant, and in Fig. 9(d) for several values of ρ, keeping η = 0.4
constant. The plots reveal two primary regimes: PF+APF
(with a stochastic switching between these two states) near
∆v = 0, and a weak PF behavior beyond this range. Near
∆v = 0, PF behavior is the weakest for low noise (η = 0.3)
or high density (ρ = 6), as the system tends to be in a liq-
uid phase, which is identified as APF in the TSVM [19]. As
noise increases or density decreases, PF behavior becomes
more pronounced as the system transitions from the APF liq-
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Figure 9. (color online) Order parameters and PF state probability
for motility heterogeneity. (a) ⟨va⟩ and (b) ⟨vs⟩ in the restricted APF
(blue square) and PF (red circle) ensembles versus ∆v for ρ = 0.5
and η = 0.24. (c–d) Probability of the PF state (pPF) vs ∆v for
(c) varying noise strength η [= 0.30 (circle), 0.35 (square) and 0.40
(diamond)] keeping ρ = 2 fixed and (d) varying particle density ρ
[= 3 (circle), 4 (square) and 6 (diamond)] keeping η = 0.4 fixed.
Parameters: v0 = 0.5, Lx = 256, and Ly = 32.

uid state to a PF+APF coexistence regime.
In Fig. 10, we present the η − ∆v and ρ − ∆v phase di-

agrams for motility heterogeneity, confirming the dominance
of the APF state away from ∆v = 0. The system remains
in a gaseous state at very high noise and low density for all
∆v. As noise decreases or density increases, the system tran-
sitions into a liquid-gas coexistence regime, showing PF+APF
coexistence for intermediate noise and density values around
∆v = 0. Moving further from ∆v = 0 along with reducing
noise or increasing density, the system first exhibits an APF
coexistence state and then eventually enters the APF liquid
state at very low noise or very high density. It is worth not-
ing that, although reversing the sign of motility heterogeneity,
∆v → −∆v, simply swaps the roles of the fast and slow
species, the phase diagrams in Fig. 10 are not symmetric un-
der this transformation. This asymmetry arises because ∆v is
varied while keeping vB = 0.5 fixed, so that vA < 0.5 for
negative ∆v and vA > 0.5 for positive ∆v. For fixed noise
η and density ρ, the steady state for ∆v < 0 is generally less
ordered than that for ∆v > 0.

In the homogeneous TSVM, inter-species anti-
ferromagnetic interactions result in flocking either when
the two species spatially separate and move in the same
direction (PF), or when they move in opposite directions
and satisfy the anti-alignment interaction (APF). Motility
heterogeneity disrupts this arrangement, as differences in
particle velocities prevent spatial segregation of the two
species. Consequently, when heterogeneity is significant,
APF remains the only viable state to satisfy the anti-alignment
interaction. However, as observed, when heterogeneity is

Figure 10. (color online) Phase diagrams for motility heterogeneity.
(a) η − ∆v phase diagram for fixed ρ = 1.5; (b) ρ − ∆v phase
diagram for fixed η = 0.4. For both cases, the velocity moduli of B
species is fixed (vB = 0.5). The boundary lines act as a guide to the
eyes.

weak, the system can still exhibit a PF state.

C. Spatial heterogeneity, or “activity landscape”

We apply spatial heterogeneity on the TSVM by construct-
ing an activity landscape which signifies space-dependent par-
ticle motility. In this model, we consider different velocities of
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Figure 11. (color online) Schematic representation of the activity
landscape. vB is constant throughout the geometry. ζ is the fraction
of space where vA > vB. This arrangement ensures that A-particles
change their velocity twice: once at the interface boundary (vertical
dotted line) and again due to the periodic boundary condition.

A-particles in different regions while keeping the velocities of
B-particles the same throughout the landscape. We construct
the activity landscape by defining ζ ∈ [0, 1] as the regional
width fraction along the horizontal dimension (Lx) without
affecting the vertical dimension (“height”) Ly .

In the region of width ζLx (fast region I), A-particles move
faster than B-particles (vA > vB), while vA < vB in the re-
maining region of width (1− ζ)Lx (slow region II). However,
we keep the inter-species velocity moduli difference the same
irrespective of the region, i.e, vR = |vA − vB|. This con-
struction resembles two laterally attached regions with motil-
ity heterogeneity ∆v = +vR (in the left) and ∆v = −vR (in
the right). A schematic of this arrangement is presented in
Fig. 11.

In Fig. 12, we demonstrate how vR and ζ impact the be-
havior of the system. We first discuss the impact of vR
when the fast and slow regions have an equal size [ζ = 0.5,
Fig. 12(a–c)]. The system exhibits a PF state when vR is small
[vR = 0.1, Fig. 12(a)] but transitions to an APF state when
vR increases [vR = 0.25, Fig. 12(b)], since the enhanced ve-
locity difference promotes APF behavior (see Sec. IV B). As
A-particles traverse the region I much faster than region II, it
leads to wider, more diffuse bands in the fast region and more
condensed bands in the slow region. For sufficiently large
vR [vR = 0.4, Fig. 12(c)], A-particles move rapidly through
region I, which limits their interaction time with B-particles,
and upon entering region II, they slow down significantly and
become almost trapped. The average number of A-particles
in one region is proportional to the time spent in that region,
which is ζLx/(vB+vR) in region I and (1− ζ)Lx/(vB−vR)
in region II. The average density then reads

ρ
I/II
A =

vB ∓ vR
ζ(vB − vR) + (1− ζ)(vB + vR)

ρA , (13)

in regions I and II, respectively. For fixed ζ, when vR → vB,
ρIA/ρ

II
A ≃ (vB − vR)/2vB ≪ 1 shows a strong trapping of

A-particles in region II. This trapping and large density of A-
particles in region II favors the two species to organize them-
selves into a vertical APF liquid state, after one or several
stochastic switching between horizontal APF and PF states,
whereas the A-particles remain in the gas phase in region I.

Next, we discuss the case of fast and slow regions with
unequal sizes [ζ = 0.75, Fig. 12(d–f)]. For vR = 0.1, the

system exhibits an APF state [Fig. 12(d)], in contrast to the
corresponding ζ = 0.5 case, but recovers the PF state at
vR = 0.25 [Fig. 12(e)]. This suggests that the emergence
of parallel flocking in our activity landscape depends on the
interplay between vR and ζ, with a larger ζ requiring a higher
vR to sustain the PF state. Similar to Fig. 12(c), for large
enough vR [vR = 0.4, Fig. 12(f)], we observe the trapping of
A-particles and the emergence of a vertical APF liquid state
in the slow region. However, the trapping is more pronounced
for ζ = 0.75, due to a narrower slow region, stabilizing even
more the vertical APF state since the average density in region
II is increased (ρIIA = ρA/(1− ζ) when vR → vB).

We next plot P (va, vs) for a fixed ζ = 0.5 with varying vR
in Fig. 13(a–e) and for a fixed vR = 0.2 with varying ζ in
Fig. 13(f–h). As observed in Sec. IV B, motility heterogeneity
causes the system to transition into an APF state with activity
landscape, but only at sufficiently high vR [Fig. 13(d)]. This
behavior arises from the imposed spatial heterogeneity, which
ensures that the average relative speed between the species is
zero. In region I, species A particles attempt to catch up with
species B particles but fall behind in region II, where B par-
ticles pursue A with an equal relative velocity. This results
in a more balanced effect on spatial segregation compared to
the simple motility heterogeneity, where the relative velocity
difference is ∆v = vR, thereby promoting greater retention
of the PF state [Fig. 13(a–c)]. As vR increases, the proba-
bility of inter-species interactions within the finite widths of
each region grows, diminishing spatial separation effects and
ultimately destroying any remaining PF behavior [Fig. 13(d,
e)].

As we increase ζ, keeping vR = 0.2 fixed [Fig. 13(f–h)],
we observe a non-monotonic behavior of the system concern-
ing the APF state. While an increase in region I (vA > vB)
encourages parallel flocking, the velocity difference vR also
plays a key role. In region I, due to comparatively higher
particle velocities (vA = 0.7, vB = 0.5), more horizon-
tal space (ζLx) is required for A-particles to catch up, and
eventually overtake B-particles. This can lead to A- and B-
particles gaining spatial segregation in a PF state on increas-
ing ζ up to a limit depending upon vR, exhibiting PF behavior
[Fig. 13(g,h)]. Such overtaking maneuvers can not occur for
the simple motility heterogeneity (Sec. IV B) as one species is
consistently faster than the other. Note that, with increasing
ζ, the segregation in region II is also decreasing concurrently,
discouraging overtakes within the reducing horizontal space
[(1− ζ)Lx] and the dominance of the APF behavior is gradu-
ally regained [Fig. 13(i, j)].

However, as depicted in Fig. 14, the existence of the PF
state depends on the combination of vR and ζ. Fig. 14(a)
presents the probability of the PF state (pPF) against ζ for
various values of vR which exhibits pPF attains its maximum
at a certain width ζ∗(vR) (> 0.5). As relative velocity vR
increases, the maximum value of pPF decreases and shifts to-
ward higher ζ∗. This shifting signifies that enhanced motility
heterogeneity needs a larger region I for the system to exhibit
PF behavior. Additionally, the gradual lowering of the peak
heights and narrower pPF curves indicate that APF increas-
ingly dominates the steady state as the velocity difference be-
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Figure 12. (color online) Steady-state snapshots for spatial heterogeneity. A (B) particles are represented by red (blue) dots, with local particle
density color-coded according to the color bar. Black arrows indicate the direction of flock propagation. The dashed vertical line separates the
vA > vB region on the left from the vA < vB region on the right. (a–c) Equal region sizes (ζ = 0.5). (d–f) Unequal region sizes (ζ = 0.75).
Parameters: ρ = 1, η = 0.3, vB = 0.5, Lx = 800, and Ly = 100. A movie (movie3) of the same can be found at Ref. [53].
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Figure 13. (color online) Probability distribution P (vs, va) for spatial heterogeneity. (a–e) For constant ζ = 0.5 and varying vR. (f–j) For
constant vR = 0.2 and varying ζ. Parameters: ρ = 0.5, η = 0.24, vB = 0.5, Lx = 256, and Ly = 32. Movies (Movie S3 and Movie S4) of
the same can be found at Ref. [56].

tween the two species grows. With spatial heterogeneity, the
total travelling times of species A and B across the system are,
respectively, given by:

tA =
ζLx

vB + vR
+

(1− ζ)Lx

vB − vR
, tB =

Lx

vB
. (14)

The condition to ensure a stable PF state is tA ≃ tB which
gives:

ζ∗ ≃ vB + vR
2vB

, (15)

and shown in Fig. 14(b).

In Fig. 14(b), we present the vR − ζ phase diagram for
vB = 0.5. The phase diagram is primarily dominated by the
APF state, while the shaded region, representing the APF+PF
regime, shrinks and shifts to higher ζ values as the inter-
species velocity difference vR increases. From the pPF vs ζ
plots, we extract ζ(vR), where pPF reaches its maximum, and
plot it as the black dotted line in Fig. 14(b), which matches
very well with Eq. (15). Fig. 14(b) illustrates that for antago-
nistic species with differing velocities, the fast region I needs
to be larger to maintain the A and B species separated and
avoid the anti-alignment interaction. However, as the relative
velocity increases further, the probability of maintaining this
separation progressively decreases.
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Figure 14. (color online) PF state probability and phase diagram for
spatial heterogeneity. (a) pPF versus ζ for Lx = 256 and Ly = 32.
On increasing vR, the peaks move towards higher ζ and become
thinner. (b) vR − ζ phase diagram. The shaded region denotes the
APF+PF regime, while the black dotted line represents ζ∗. Parame-
ters: ρ = 0.5, η = 0.24, and vB = 0.5.

In summary, we show how spatial geometry acting as an
activity landscape can affect the two-species flocking dynam-
ics. Although APF behavior dominates the steady state, which
could be horizontal or vertical depending on the relative ve-
locity, parallel flocking behavior can be maintained within the
overall geometry.

D. Noise heterogeneity, or unfriendly “hot” and “cold”
particles

So far, heterogeneity in species density ρA(B) and velocity
vA(B) is explored as a means of introducing variability in the
otherwise homogeneous TSVM [19]. However, heterogene-
ity can also be introduced through (athermal) noise [41, 42],
leading to two sub-populations with differing sensitivities to
external noise. Species exposed to higher noise levels can be
described as hot species, while those exposed to lower noise
levels can be considered cold species. We will maintain a con-
stant noise level ηB = η for species B, while varying the noise
parameter ηA for species A with ∆η = ηA − ηB.

Starting from an initial PF configuration, Fig. 15 illustrates
the time evolution of the TSVM under noise heterogeneity,
with η = 0.3 and ∆η = −0.2, at a fixed system density ρ = 1
and self-propulsion speed v0 = 0.5. Initially, the two bands
are organized in a PF state [Fig. 15(a)]. Over time, species
A (red) advances faster than species B (blue), leading to an
inter-species collision [Fig. 15(b–c)]. This collision triggers
a transition where the anti-alignment interaction disrupts the
order within species B, causing fragmentation and subsequent
reorganization into a new PF state [Fig. 15(d–e)].

This difference in flocking speeds arises despite both
species having the same intrinsic self-propulsion speed v0.
The key factor governing their motion is the band velocity, a
property shaped by noise heterogeneity. At lower noise, par-
ticles align more effectively, leading to a stronger collective
motion and a larger band velocity. Conversely, higher noise
reduces alignment, decreasing the band velocity. In Fig. 15,
species A, with lower noise, achieves a higher band velocity
than species B, with larger noise. As species A maintains a
higher band velocity, this cycle of collision, PF state destruc-

Figure 15. (color online) Time evolution of the TSVM under noise
heterogeneity. (a) Initially, the bands of two species are in a PF state.
(b–c) Over time, species A (red), having a higher group velocity,
catches up to species B (blue), leading to a collision-mediated tran-
sition. (d–e) This interaction disrupts the flocking band of species
B, causing fragmentation and subsequent reorganization into a new
PF state. Parameters: ρ = 1, η = 0.3, v0 = 0.5, ∆η = −0.2,
Lx = 800, and Ly = 100. A movie (movie4) of the same can be
found at Ref. [53].

tion, and reformation continues over time. Fig. 15 thus high-
lights that in a two-species system, effective flocking velocity
is not merely a direct consequence of individual propulsion
speed but an emergent property governed by noise and inter-
species interactions. It also indicates that the “cold” species
(A) dominates the dynamics (as also observed in Ref. [41])
as its higher band velocity drives the recurring collisions and
reorganizations of the flocking bands.

In Fig. 16, the probability distribution P (va, vs) is pre-
sented for increasing values of ∆η, with η = 0.24 fixed. For
∆η < 0, the system transitions from a highly ordered APF
state at very low ηA [Fig. 16(a)] to PF+APF configurations,
exhibiting stochastic switching between these two dynamic
states as ∆η increases [Fig. 16(b–c)]. When ∆η ∼ 0, the sys-
tem oscillates between PF and APF states. As ∆η increases,
the two states become gradually equiprobable, with small or-
der parameter values due to the high noise, leading the system
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Figure 16. (color online) Probability distribution P (vs, va) for vary-
ing noise heterogeneity. (a–b) shows PF-APF stochastic switching
with strong APF behavior and strong ordering. (c–f) denotes this
switching with more prominence of PF behavior as ∆η increases.
(g–i) demonstrates the dissolution of the dual flocking states as the
system shows a SSF state at high ∆η. Parameters: ρ = 0.5,
η = 0.24, v0 = 0.5, Lx = 256, and Ly = 32. A movie (Movie S5)
of the same can be found at Ref. [56].
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Figure 17. (color online) Order parameters for noise heterogeneity.
⟨va⟩ and ⟨vs⟩ in the restricted APF (blue square), PF (red circle), and
SSF (black star) ensembles for varying ∆η. Parameters: ρ = 0.5,
η = 0.24, v0 = 0.5, Lx = 256, and Ly = 32.

toward the SSF state discussed in Sec. IV A for ∆η ≥ 0.08.
In Fig. 17, the order parameters of the system are plotted

against ∆η, showing a decline in their respective dominant
ensembles (e.g., ⟨va⟩ in the va ≥ vs ensemble or ⟨vs⟩ in the
vs ≥ va ensemble) as ∆η increases, before stabilizing with
va ∼ vs where the SSF state is dominant (similar to Fig. 4).
This reflects an increase in the overall disorder in the system
as species A becomes “hotter”. A more notable observation is
the behavior of the order parameters in ensembles where they
do not represent the dominant flocking behavior (e.g., ⟨va⟩ in
the va ≤ vs ensemble or ⟨vs⟩ in the vs ≤ va ensemble). There
is a consistent decrease in the order parameter until the noise
reception of the two species is equal, ∆η ≃ 0, reflecting the
trend of the dominant ensemble. However, beyond this point
(∆η > 0), up until the SSF regime (∆η ≥ 0.08), a sharp in-
crease in the order parameter is observed. In the PF+APF co-

Figure 18. (color online) Phase diagrams for noise heterogeneity. (a)
η−∆η phase diagram for fixed ρ = 1.5; (b) ρ−∆η phase diagram
for fixed η = 0.3. For both cases, the velocity modulus is v0 = 0.5.
The boundary lines act as a guide to the eyes.

existence regime with ∆η ∈ [0, 0.08], the two ensembles con-
verge as ∆η is increased and merge in the va ∼ vs ensemble.
This behavior can be attributed to the diminishing contribu-
tion of the order parameter from the “hotter” species, causing
the system to resemble the SSF state discussed in Sec. IV A.

In Fig. 18, we present the η − ∆η and ρ − ∆η phase dia-
grams for noise heterogeneity, confirming the presence of the
PF+APF coexistence state away from ∆η = 0. The system
remains in a gaseous state at high noise and low density for
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∆η ≥ 0 (species A has higher noise), while the system ex-
hibits an SSF state formed by A bands for ∆η < 0 (species A
has lower noise). As noise decreases or density increases, the
system transitions into a liquid-gas coexistence regime, show-
ing PF+APF coexistence, for ∆η < 0, and into an SSF state
formed by B bands for ∆η > 0 (species A has higher noise).
For even lower noise or larger density, the system transitions
into APF coexistence state and then eventually enters the APF
liquid state, analogously to the homogeneous TSVM.

In summary, noise heterogeneity, where species differ in
their sensitivity to external noise, leads to distinct band ve-
locities. The cold (lower-noise) species dominates flocking
dynamics through higher band velocity, driving repeated colli-
sions and reorganizations. This noise heterogeneity also gives
rise to two distinct single-species flocking (SSF) states, de-
pending on which species experiences the lower noise level.

V. DISCUSSION

We investigate the impact of various heterogeneities on
multi-species flocking dynamics using the two-species Vic-
sek model (TSVM) [19]. In the presence of strong popula-
tion heterogeneity, at high noise (or low density), the PF and
APF states vanish into a single flock dominated by the ma-
jority species, while the minority species remains in a disor-
dered state, resembling the behavior of the single-species VM.
However, at low noise (or high density), the minority group
becomes polarized, leading to an APF liquid state where both
species move in opposing directions.

For strong motility heterogeneity, we established the ab-
sence of the PF state in the coexistence regime as the spatial
segregation between species is compromised. However, con-
sidering activity landscapes with region-dependent motilities,
the dynamical behavior contrasts with the simple motility het-
erogeneity. We find high retention of the PF behavior for a
given geometry, where the fast region is larger than the slow
region, and the emergence of a vertical APF state for large rel-
ative velocity, due to particle trapping in the slow region. This
shows that interruption by environmental constructs plays a
big role in shaping the nature of flocking. In this regard,
our current implementation is based on sharp spatial varia-
tions in motility. A natural extension would be to incorpo-
rate smooth motility gradients or time-evolving landscapes,
which more accurately reflect realistic environments. Gradual
changes in activity could soften inter-species collisions and
mitigate sharp density mismatches, while temporally varying
or fluctuating landscapes may act as continuous sources of dis-
order, disrupting segregation and potentially stabilizing new
dynamic patterns. Exploring such scenarios presents an inter-
esting direction for future work.

We also find that species motility is significantly affected
by noise heterogeneity, where the colder species (subjected to
lower noise) moves faster than the hotter one due to its higher
band velocity, eventually catching up and transiently disrupt-
ing any PF structure. However, the pattern re-emerges, reflect-
ing a dynamic yet robust response to noise asymmetry. This
behavior contrasts with motility heterogeneity, where differ-

ing species velocities lead to the absence of the PF state in the
coexistence regime.

Similar heterogeneities can be experimentally realized in
vibrationally excited granular active matter (vibrobots) [11,
57, 58] or programmable robotic swarms [59] through con-
trolled adjustment of agent design (e.g. shape, size, surface
properties etc.) [60] and environmental parameters (e.g. pop-
ulation density, vibration frequency or robot speed, substrate
characteristics, communication range, alignment strength, re-
pulsion thresholds etc.) [61]. In biological systems, such
heterogeneities are especially relevant, both in multi-species
interactions and within a single species exhibiting internal
diversity. Examples may include flocks exhibiting a vari-
ety of collective escape patterns under predation [62, 63],
fish from high predation populations forming more cohesive
groups [64], strong ecological interactions leading to partner
intermixing in microbial communities [65], social behavior of
mixed-species flocks emerging from species-specific interac-
tion rules [66], consistent collective decision-making across
heterogeneous taxonomic groups [67] and intermittent collec-
tive dynamics in sheep herds emerging from individual-level
behavioral shifts [68].

In confined environments, stability emerges more easily if
components interact frequently, but it can also be disrupted by
the surrounding “habitat”. For instance, if one species relies
on a resource for growth while the other does not, this imbal-
ance can induce indirect inter-species interactions. A classic
case is antagonistic predator-prey dynamics: if a predator con-
sumes prey that depends on an external resource (e.g., vege-
tation or water), fluctuations in that resource indirectly affect
the predator, even though the predator interacts only with the
prey. Our framework could be extended to capture such en-
vironmental feedback by introducing a localized, depletable
resource field that influences only one species. Another nat-
ural extension would be to incorporate individual-level feed-
back mechanisms such as quorum sensing, where particles ad-
just their motility or alignment in response to local density or
species composition. Within the framework of our model, this
can be achieved by allowing each particle’s self-propulsion
speed or alignment strength to depend dynamically on local
crowding or the relative concentration of different species.

Furthermore, non-uniform system noise and obstacles [69]
can be considered as other convincing candidates for impart-
ing spatial heterogeneity. Another natural extension would
be to let particle velocities depend on the local crowding by
introducing a density-dependent self-propulsion speed simi-
lar to the softcore restriction considered in Ref. [70]. Finally,
the TSVM [19] does not have the factor of agent size. We can
bring size (and later, even shape) into the picture by first work-
ing with finite-size hard discs [69] instead of point particles in
the future.

Appendix A: On the stability and translational order of the
micro-phase separated state

Here, we discuss the stability of the micro-phase separated
bands and examine whether they exhibit any translational or-
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Figure 19. Comparison of band configuration at (a) t = 106 and (b) t = 107 showing stable band number over long times. Parameters:
ρ = 1, η = 0.3, v0 = 0.5.

der, focusing on the band structures obtained in the pres-
ence of population heterogeneity (Sec. IV A). We find that the
micro-phase separated coexistence phase corresponds to a sta-
ble steady state, and that band coarsening is limited: the num-
ber and size of bands remain finite even at long times. Fig. 19
shows steady-state band configurations for different values of
m0 at t = 106 and t = 107, and confirms that once the sys-
tem reaches the phase-separated state, the average number of
bands remains largely unchanged over time. It is important
to note that in both the VM and TSVM, fluctuations—arising
from noise and finite system size—can affect band number
and spacing by inducing mergers, splits, or positional shifts,
leading to temporal variations in the band structure even af-
ter apparent phase separation. In a two-species system with
reciprocal interactions, as in the present model, the alignment
dynamics between species introduces further complexity by
coupling their spatial organization.

To investigate the presence of long-range translational order
similar to a flying smectic, we compute the static structure fac-
tor corresponding to the longitudinal particle density profile.
This analysis is limited to cases with m0 ≥ 0.6, where the mi-
nority species no longer forms distinct bands, and the overall
spatial organization becomes more regular. The system is di-
vided along the longitudinal (x) direction into Ly stripes, and
the one-dimensional density profile ρ(i) is computed. From
this, we determine the density fluctuations δρ(i) = ρ(i)−⟨ρ⟩,
and apply a discrete Fourier transform to obtain the spectral
density ρ̃(kx). The non-normalized structure factor is then
calculated as S(kx) = |ρ̃(kx)|2. Fig. 20 presents the result-
ing structure factors for m0 = 0.6 and m0 = 0.8. In both
cases, a prominent Bragg peak is observed and aligns with the

expected wavevector k1 = 2π/a, where a = Lx/nb denotes
the average distance between bands and nb is the number of
observed bands. However, no higher-order harmonics at in-
teger multiples of k1 are seen, and the primary peak shows
considerable broadening, especially at m0 = 0.6. These ob-
servations indicate notable fluctuations in both band spacing
and width, inconsistent with true long-range translational or-
der. Therefore, although the bands may appear quasi-periodic
over limited regions and timescales, the system remains in a
fluctuating, dynamic banded state rather than forming a true
smectic.

Therefore, our analysis reveals that the micro-phase sepa-
rated state in the heterogeneous TSVM exhibits finite band
structures that persist over long times without coarsening into
a macroscopic phase-separated state. However, the presence
of broadened, irregular Bragg peaks in the structure factor sig-
nals the absence of long-range translational symmetry, distin-
guishing these banded states from flying smectics.

ACKNOWLEDGEMENTS

AD sincerely acknowledges the Indian Association for the
Cultivation of Science (IACS), Kolkata, India, for providing
the fellowship and computational facilities. RP thanks IACS
for its computational facilities and resources. SC, MM, and
HR are financially supported by the German Research Foun-
dation (DFG) within the Collaborative Research Center SFB
1027-A3. AD acknowledges many helpful discussions with
Dr. Mintu Karmakar.



15

Figure 20. Structure factors (non-normalized) constructed from the spatial Fourier transform of the one-dimensional projected density profile
along x axis: (a) m0 = 0.6. (b) m0 = 0.8. All prominent Bragg peaks have been marked with red dashed lines. Parameters: ρ = 1, η =
0.3, v0 = 0.5.
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