

EMERGENT PHASES IN A DISCRETE FLOCKING MODEL WITH RECIPROCAL INTERACTION

M. Mangeat¹, S. Chatterjee¹, J.D. Noh², and H. Rieger¹

¹Center for Biophysics & Department for Theoretical Physics, Saarland University, Saarbrücken, Germany.

²Department of Physics, University of Seoul, Seoul, Korea.

Monday, March 17th

DPG Meeting - Regensburg 2025 (DY 3.4)

1 Introduction

2 The two-species active Ising model

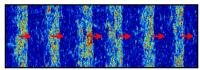
3 The two-species active Ising model with species flip

4 Conclusion

Introduction: collective motion to Vicsek model

Becco et al., Physica A (2006)

Bird flocks



Ballerini et al., PNAS (2008)

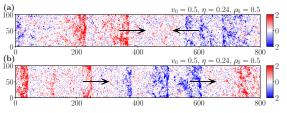
- Collective motion: out-of-equilibrium phenomenon with internal energy consumption to self-propel.
- Flocking transition: spontaneous emergence of synchronized motion of large clusters (large densities, low noise).
- ▶ First theoretical model: the Vicsek model (1995), where particles follow the ferromagnetic alignment:

$$\theta_i(t+1) = \langle \theta(t) \rangle_r + \eta \xi_i(t)$$

$$\mathbf{x_i}(t+1) = \mathbf{x_i}(t) + v\mathbf{e_i}(t+1)$$

with $\mathbf{e_i}(t+1)$ in the direction $\theta_i(t+1)$, $\xi_i(t)$ a white noise.

- ► Spontaneous breaking of the continuous symmetry, via a liquid-gas phase transition.
 - T. Vicsek et al., PRL 75, 1226 (1995).
 - A. P. Solon et al., PRL 114, 068101 (2015).


Introduction: the two-species Vicsek model and discrete versions

▶ Introduction of two species defined by a spin $s_i = \pm 1$, modifying the alignment rule:

$$\langle \mathbf{e_i} \rangle_r = \sum_j J_{ij} \mathbf{e_j}$$

with $J_{ij} = s_i s_j$ (ferromagnetic if same species, anti-ferromagnetic if different species).

- ▶ Main results of the two-species Vicsek model (TSVM):
 - ▶ Two main states showing antiparallel (APF) and parallel (PF) flocking.

- ▶ Stochastic switching between both states, liquid phase only in APF state.
- S. Chatterjee, M. Mangeat, C.-U. Woo, H. Rieger, and J. D. Noh, PRE 107, 024607 (2023).
- ▶ Two discretized models, discussed next:
 - ▶ Replace the continuous angle θ_i by a two-state spin $\sigma_i = \pm 1$.
 - ▶ Add a second ferromagnetic interaction between species $s_i = \pm 1$.

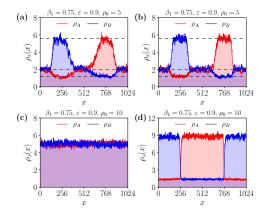
TSAIM: the model

- ▶ N particles in a periodic 2d lattice of size $L_x \times L_y$. Average density: $\rho_0 = N/L_x L_y$.
- ▶ Equal population of both species, $N_A = N_B = N/2$.
- ▶ j^{th} particle on site i equipped with a spin $\sigma_i^j = \pm 1$ and a species $s_i^j = \pm 1$.
- ▶ Local Hamiltonian (Ising interaction) on site *i*:

$$H_i^{(1)} = \frac{1}{2\rho_i} \sum_{k \neq j} J_{jk} \sigma_i^j \sigma_i^k,$$

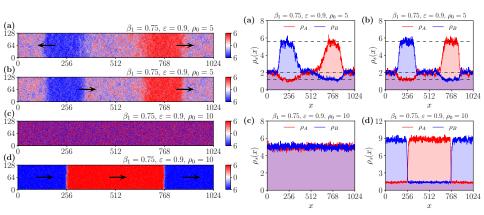
with $J_{jk} = J_1 s_i^j s_i^k$ (ferromagnetic if same species, anti-ferromagnetic if different species).

▶ Flipping rate for the spin-orientation $\sigma \to -\sigma$:

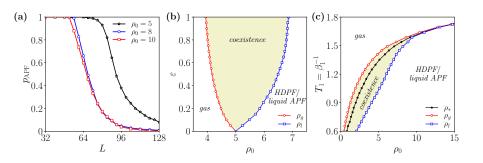

$$W_{\text{flip}}^{(1)} = \gamma_1 \exp\left(-\frac{2\beta_1}{\rho_i} s \sigma v_{a,i}\right),$$

where $v_{a,i} = \langle s_i \sigma_i \rangle = m_{A,i} - m_{B_i}$ is the order parameter.

▶ Nearest-neighbor biased hopping in $\pm \mathbf{e_x}$ [const. hopping rate D along $\pm \mathbf{e_y}$]:


$$W_{\text{hop}}(\sigma) = D(1 \pm \sigma \varepsilon).$$

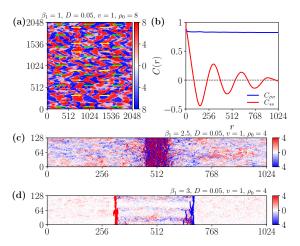
TSAIM: density profiles


- ▶ PF and APF states are present (similar to TSVM).
- ▶ The liquid phase can be in both PF/APF states (different from TSVM).
- ▶ No stochastic switching between APF and PF states (different from TSVM).
- \blacktriangleright Explanation: macrophase separated bands, due to normal fluctuations.

TSAIM: density profiles

- ▶ PF and APF states are present (similar to TSVM).
- ▶ The liquid phase can be in both PF/APF states (different from TSVM).
- ▶ No stochastic switching between APF and PF states (different from TSVM).
- ▶ Explanation: macrophase separated bands, due to normal fluctuations.

TSAIM: phase diagrams



- ▶ PF state is mainly obtained during a quench, when $L \ll 1$ (different from TSVM).
- ▶ Liquid-gas phase transition, with both PF and APF steady states, depending on the initial condition.

The two-species active Ising model

TSAIM: metastability (small diffusion)

TSAIM: metastability (small diffusion)

- ▶ New steady state with long-range order in spin, but short-range order in species.
- ▶ Motility-induced interface pinning when $\beta_1 \gg 1$ and $D \ll 1$.
- Analogous to the one-species AIM. C.-U. Woo and J. D. Noh, PRL 133, 188301 (2024).

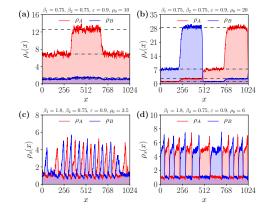
TSAIM with species flip: the model

- ▶ N particles in a periodic 2d lattice of size $L_x \times L_y$. Average density: $\rho_0 = N/L_x L_y$.
- ▶ The population of both species depends on time.
- ▶ j^{th} particle on site i equipped with a spin $\sigma_i^j = \pm 1$ and a species $s_i^j = \pm 1$.
- ▶ Local Hamiltonian (two coupled Ising interactions, active extension of the Ashkin-Teller model) on site *i*:

$$H_i^{(1)} = \frac{1}{2\rho_i} \sum_{k \neq j} J_{jk} \sigma_i^j \sigma_i^k$$
, and $H_i^{(2)} = \frac{J_2}{2\rho_i} \sum_{k \neq j} s_i^j s_i^k$,

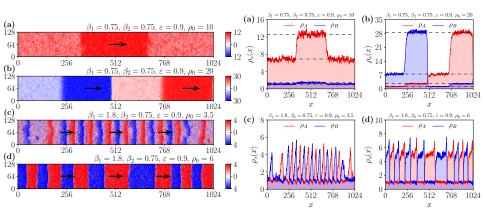
with $J_{jk} = J_1 s_i^j s_i^k$ (ferromagnetic if same species, anti-ferromagnetic if different species).

▶ Flipping rate for the spin-orientation $\sigma \to -\sigma$ and the species $s \to -s$:

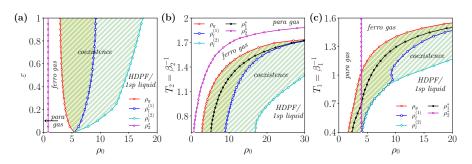

$$W_{\mathrm{flip}}^{(1)} = \gamma_1 \exp\left(-\frac{2\beta_1}{\rho_i} s \sigma v_{a,i}\right), \quad \text{and} \quad W_{\mathrm{flip}}^{(2)} = \gamma_2 \exp\left(-\frac{2\beta_2}{\rho_i} s \mu_i\right),$$

where $v_{a,i}=\langle s_i\sigma_i\rangle=m_{A,i}-m_{B,i}$ and $\mu_i=\langle s_i\rangle=\rho_{A,i}-\rho_{B,i}$ are the order parameters.

▶ Nearest-neighbor biased hopping in $\pm \mathbf{e_x}$ [const. hopping rate D along $\pm \mathbf{e_y}$]:


$$W_{\text{hop}}(\sigma) = D(1 \pm \sigma \varepsilon).$$

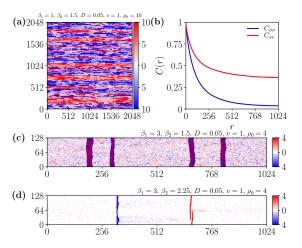
TSAIM with species flip: density profiles


- ▶ no APF state.
- ▶ Macrophase separated bands when $\beta_1 \lesssim \beta_2$.
- ▶ Microphase separated bands when $\beta_1 \gg \beta_2$.
- ▶ Liquid phase only in PF state (with one or two species present).

TSAIM with species flip: density profiles

- ▶ no APF state.
- ▶ Macrophase separated bands when $\beta_1 \lesssim \beta_2$.
- ▶ Microphase separated bands when $\beta_1 \gg \beta_2$.
- ▶ Liquid phase only in PF state (with one or two species present).

TSAIM with species flip: phase diagrams



- ▶ Phases of the active extension of the Ashkin-Teller model ($\langle v_a \rangle \equiv \langle s\sigma \rangle$ and $\langle \mu \rangle \equiv \langle s \rangle$):
 - ▶ paramagnetic gas: $\langle v_a \rangle = 0$ and $\langle \mu \rangle = 0$ (spin disorder, species disorder),
 - ▶ ferromagnetic gas: $\langle v_a \rangle = 0$ and $\langle \mu \rangle > 0$ (spin disorder, species order),
 - ▶ microscopic flocking: $\langle v_a \rangle > 0$ and $\langle \mu \rangle = 0$ (spin order, species disorder),
 - ▶ macroscopic flocking: $\langle v_a \rangle > 0$ and $\langle \mu \rangle > 0$ (spin order, species order).
- ▶ Flocking is seen as a liquid-gas phase transition, depending on the initial proportion of each species.

The two-species active Ising model with species flip

TSAIM with species flip: metastability (small diffusion)

TSAIM with species flip: metastability (small diffusion)

- ▶ New steady state with long-range order in species, but short-range order in spin.
- ▶ Motility-induced interface pinning when $\beta_1 \gg 1$ and $D \ll 1$, enhanced with large β_2 .
- ▶ Analogous to the one-species AIM. C.-U. Woo and J. D. Noh, PRL 133, 188301 (2024).

Conclusion

- ► TSAIM without species flip:
 - ▶ PF and APF states are present without stochastic switching between both states.
 - ▶ PF state is formed during a quench in the hydrodynamic limit.
 - ▶ Liquid phase metastable for small diffusion, forming a new state (LRO in spin, SRO in species).

- ► TSAIM with species flip:
 - ▶ APF state is absent, but microphase separated bands are formed.
 - ▶ Active extension of the Ashkin-Teller model (two coupled Ising models), which can be seen as a voter model for self-propelled agents.
 - ▶ Liquid phase metastable for small diffusion, forming a new state (LRO in species, SRO in spin).

Thank you for your attention!

References:

 M. Mangeat, S. Chatterjee, J. D. Noh, and H. Rieger, Emergent complex phases in a discrete flocking model with reciprocal and non-reciprocal interactions, arXiv:2412.02501.

- ▶ C.-U. Woo and J. D. Noh, Motility-Induced Pinning in Flocking System with Discrete Symmetry, Phys. Rev. Lett. **133**, 188301 (2024).
- S. Chatterjee, M. Mangeat, C.-U. Woo, H. Rieger, and J. D. Noh, Flocking of two unfriendly species: The two-species Vicsek model, Phys. Rev. E 107, 024607 (2023).