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Abstract
Non-reciprocal interactions arise in systems that seemingly violate Newton’s third law “actio=reactio”. They are ubiquitous in active and living systems that break detailed balance at the microscale, from social forces

to antagonistic inter-species interactions in bacteria. Non-reciprocity affects non-equilibrium phase transitions and pattern formation in active matter and represents a rapidly growing research focus in the field. In this
work, we have undertaken a comprehensive study of the non-reciprocal two-species active Ising model [1], a non-reciprocal discrete-symmetry counterpart of the continuous-symmetry two-species Vicsek model. Our
study uncovers a distinctive run-and-chase dynamical state that emerges under significant non-reciprocal frustration. In this state, A-particles chase B-particles to align with them, while B-particles avoid A-particles,
resulting in B-particle accumulation at the opposite end of the advancing A-band. This run-and-chase state represents a non-reciprocal discrete-symmetry analog of the chiral phase seen in the non-reciprocal Vicsek
model. Additionally, we find that self-propulsion destroys the oscillatory state obtained for the non-motile case.

Non-reciprocal two-species active Ising model
▶ 𝑁 particles on a periodic square lattice with 𝐿𝑥 × 𝐿𝑦 sites. Average density: 𝜌0 = 𝑁/𝐿𝑥𝐿𝑦 .
▶ Equal population of both species: 𝑁A = 𝑁B = 𝑁/2.
▶ The 𝑗 th particle on site 𝑖 is equipped with a spin-orientation 𝜎𝑗𝑖 = ±1.
▶ The 𝑗 th particle is further equipped with a species-spin 𝑠𝑗𝑖 = ±1; 𝑠A = 1, 𝑠B = −1.
▶ No restriction is applied on the number of particles 𝜌𝑖 = ∑𝑠,𝜎 𝑛𝜎𝑠,𝑖 on site 𝑖.
▶ Intra-species interactions: 𝐽AA = 𝐽BB = 𝐽 = 1.
▶ Species A aligns with species B with an interaction strength 𝐽AB (0 ≤ 𝐽AB ≤ 𝐽 ).
▶ Species B anti-aligns with species A with interaction strength 𝐽BA (−𝐽 ≤ 𝐽BA ≤ 0).
▶ 𝐽AB = −𝐽BA = 𝐽NR ≤ 𝐽 .
▶ Flipping rate for the spin-orientation (on-site) [2]:

𝑊NR
flip(𝜎 → −𝜎) = 𝛾 exp(−

2𝛽1
𝜌𝑖

𝜎𝜇eff𝑠 ) .

▶ Effective local magnetization: 𝜇effA = 𝐽AA𝑚A + 𝐽AB𝑚B, 𝜇effB = 𝐽BB𝑚B + 𝐽BA𝑚A, 𝑚𝑠 = 𝑛+𝑠 − 𝑛−𝑠 .
▶ Dimensionless variables: 𝛽1 ≡ 𝛽𝐽 = 𝑇−1 and 𝑠𝑠′ = 𝐽𝑠𝑠′/𝐽 ; 𝛾 = 1.
▶ Nearest-neighbor biased hopping in 1𝑑 (±𝐞𝐱) [const. hopping rate 𝐷 along ±𝐞𝐲] [2]:

𝑊hop(𝜎) = 𝐷(1 ± 𝜎𝜀) ; 0 ≤ 𝜀 ≤ 1.

Time-evolution of the NRTSAIM at maximum non-reciprocity

 0

 64

 128

 0  256  512  768  1024
5

0

5
t = 4t = 4

 0

 64

 128

 0  256  512  768  1024
5

0

5
t = 256t = 256

 0

 64

 128

 0  256  512  768  1024
5

0

5
t = 512t = 512

 0

 64

 128

 0  256  512  768  1024
5

0

5
t = 1024t = 1024

 0

 64

 128

 0  256  512  768  1024
5

0

5
t = 5792t = 5792
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▶ Coupled run-and-chase
state

▶ Red: Species A
Blue: Species B

▶ Nucleation of an A-band in the
gas phase in front of the
B-band (𝑡 = 256)

▶ To avoid them, B-particles start
to accumulate (𝑡 = 512, 1024)

▶ Substantial accumulation→
denser B-band and slowing
down of band velocity
(𝑡 = 5792)

▶ Allows B-particles to maintain
maximum distance from
pursuing A-particles

Steady-state snapshots and density profiles for various NR

0 256 512 768 1024
0

64

128
β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0(a)

5

0

5

0 256 512 768 1024
0

64

128
β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.1(b)

5

0

5

0 256 512 768 1024
0

64

128
β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.3(c)

5

0

5

0 256 512 768 1024
0

64

128
β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.55(d)

5

0

5

0 256 512 768 1024
0

64

128
β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.6(e)

5

0

5

0 256 512 768 1024
0

64

128
β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 1(f)

5

0

5

0 256 512 768 1024
x

0

2

4

6

8

ρ
s(
x

)

β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0
(a)

ρA ρB

0 256 512 768 1024
x

0

2

4

6

8

ρ
s(
x

)

β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.1
(b)

ρA
ρB

0 256 512 768 1024
x

0

2

4

6

8

10

ρ
s(
x

)

β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.3
(c)

ρA
ρB

0 256 512 768 1024
x

0

2

4

6

8

10

ρ
s(
x

)

β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.55
(d)

ρA
ρB

0 256 512 768 1024
x

0

7

14

21

28

35

ρ
s(
x

)

β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 0.6
(e)

ρA
ρB

0 256 512 768 1024
x

0

20

40

60

80

ρ
s(
x

)

β1 = 1.25, ε = 0.9, ρ0 = 4, JNR = 1
(f)

ρA
ρB

(a–b) band velocity 𝑐 ∼ 1.96 is larger than the self-propulsion velocity of the particles 𝑣 = 2𝐷𝜀 = 1.8 for
small NR. (e–f) 𝑐 ∼ 1.64 of the B-band is smaller than 𝑣 since the NR interaction slows down the B-band.

NRTSAIM State Diagrams
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▶ (a) NR − 𝛽1 diagram for 𝜌0 = 4, (b) NR − 𝜌0 diagram for 𝛽1 = 1.25, and (c) AB − BA diagram for
𝛽1 = 1.25, 𝜌0 = 4, and 𝜀 = 0.9.

Purely diffusive NRTSAIM (𝜀 = 0)

0 125 250 375 500
t

−2

−1

0

1

2

m
s

(a) mA mB

−2 −1 0 1 2
mA

−2

−1

0

1

2

m
B

(b)
β1 = 1.6
β1 = 1.9

β1 = 2.2
β1 = 2.5

β1 = 2.8

1.8 2.2 2.6 3
β1

102

103

τ

(c) JNR = 0.05
JNR = 0.1
JNR = 0.15
JNR = 0.2

1 1.5 2 2.5 3
β1

0

0.2

0.4

0.6

〈|m
|〉

(d)

L = 16
L = 24
L = 32
L = 48
L = 64

1.8 2 2.2

0.3

0.4

0.5

U
m

ρ0

1.5 1.75 2 2.25 2.5
β1

0

0.1

0.2

0.3

J N
R

disorder

oscillatory

(e)

β∗

0 3 6 9 12
ρ0

0.4

0.5

0.6

0.7

0.8

T
1

=
β
−

1
1

disorder

oscillatory

(f)

ρ∗

▶ (a) Time-evolution of 𝑚A and 𝑚B
exhibits an oscillatory (swap) state.
𝛽1 = 2.2, 𝜌0 = 4, and NR = 0.1.

▶ (b) System exhibits stable limit
cycles. NR = 0.1.

▶ (c) 𝜏 increases exponentially with 𝛽1,
and decreases with NR.

▶ (d) 𝐦 = (𝑚𝐴, 𝑚𝐵) characterizes the
transition between the disordered
state and the oscillatory state.

▶ The transition occurs at 𝛽∗ = 1.94.
▶ (e) (NR, 𝛽1) state diagram for
𝜌0 = 4. Disorder/oscillatory
transition line corresponds to Hopf
bifurcation.

▶ (f) (𝑇1, 𝜌0) state diagram for
NR = 0.1.

Hydrodynamic equations of the NRTSAIM
▶ Average particle density 𝜌𝜎𝑠 (𝐱; 𝑡) ≡ ⟨𝑛𝜎𝑠 (𝐱; 𝑡)⟩ in state 𝜎 and species 𝑠.
▶ Particle density 𝜌𝑠(𝐱; 𝑡) = ∑𝜎 𝜌𝜎𝑠 (𝐱; 𝑡) and the magnetization 𝑚𝑠(𝐱; 𝑡) = ∑𝜎 𝜎𝜌𝜎𝑠 (𝐱; 𝑡) of species 𝑠.
▶ Hydrodynamic equations:

𝜕𝑡𝜌𝑠 = 𝐷∇2𝜌𝑠 − 𝑣𝜕𝑥𝑚𝑠

𝜕𝑡𝑚𝑠 = 𝐷∇2𝑚𝑠 − 𝑣𝜕𝑥𝜌𝑠 + 2𝛾𝑠(𝜌) [(𝜌𝑠 −
𝑟𝑠𝑠

2𝛽1𝐽𝑠𝑠)
sinh(

2𝛽
𝜌
𝐽𝑠𝑠′𝑚𝑠′) − 𝑚𝑠 cosh(

2𝛽
𝜌
𝐽𝑠𝑠′𝑚𝑠′)] .

▶ Self-propulsion velocity 𝑣 = 2𝐷𝜀.
▶ 𝛾𝑠(𝜌) = 𝛾NR exp[(𝑟𝑠𝐴 + 𝑟𝑠𝐵)/2𝜌] and 𝑟𝑠𝑠′ = (2𝛽𝐽𝑠𝑠′)

2𝛼𝑠′.
▶ If we consider 𝛼𝐴 = 𝛼𝐵 as well as 𝐽𝐴𝐴 = 𝐽𝐵𝐵 for identical species but with non-reciprocal interactions,
we get 𝑟𝐴𝐴 = 𝑟𝐵𝐵 = 𝑟 , 𝑟𝐴𝐵 = (𝐽𝐴𝐵/𝐽 )2𝑟 and 𝑟𝐵𝐴 = (𝐽𝐵𝐴/𝐽 )2𝑟 .

Results from solving the hydrodynamic equations
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▶ Density profiles for (a) NR = 0.1
and (b) NR = 1. 𝜀 = 0.9.

▶ (c) (NR, 𝛽1) state diagram for
𝜌0 = 2.5 and 𝜀 = 0.9.

▶ (d) (NR, 𝜌0) state diagram for
𝛽1 = 1.25 and 𝜀 = 0.9.

▶ (e) (NR,𝛽1) state diagram for
𝜌0 = 2.5 and 𝜀 = 0.

▶ (f) temperature-density state
diagram for NR = 0.1 and 𝜀 = 0.

▶ In our numerical simulations, we do
not observe any ordered state for
any nonzero values of NR, even at
large 𝛽1.

▶ In numerical simulations of our
microscopic model, the oscillatory
state persists, likely because
particles can still diffuse when 𝜀 = 0,
which stabilizes the oscillatory state.

Summary
▶ The NRTSAIM exhibits a highly efficient run-and-chase state, where B-particles accumulate at the far
end of the advancing A-band, maximizing their distance.

▶ In the non-motile NRTSAIM, for any nonzero NR, regardless of how small, the oscillation period
does not diverge at a finite temperature, showing that no ordered state can be reached.
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