Emergent phases in a discrete flocking model with non-reciprocal interaction
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Abstract

Non-reciprocal interactions arise in systems that seemingly violate Newton’s third law “actio=reactio”. They are ubiquitous in active and living systems that break detailed balance at the microscale, from social forces
to antagonistic inter-species interactions in bacteria. Non-reciprocity affects non-equilibrium phase transitions and pattern formation in active matter and represents a rapidly growing research focus in the field. In this
work, we have undertaken a comprehensive study of the non-reciprocal two-species active Ising model [1], a non-reciprocal discrete-symmetry counterpart of the continuous-symmetry two-species Vicsek model. Our
study uncovers a distinctive run-and-chase dynamical state that emerges under significant non-reciprocal frustration. In this state, A-particles chase B-particles to align with them, while B-particles avoid A-particles,
resulting in B-particle accumulation at the opposite end of the advancing A-band. This run-and-chase state represents a non-reciprocal discrete-symmetry analog of the chiral phase seen in the non-reciprocal Vicsek
model. Additionally, we find that self-propulsion destroys the oscillatory state obtained for the non-motile case.

Non-reciprocal two-species active Ising model Purely diffusive NRTSAIM (¢ = 0)

» N particles on a periodic square lattice with Ly x L, sites. Average density: pg = N/LyLy. (a) 2 — . — ms (b) N T
» Equal population of both species: No = Ng = N/2. 1_\ ’X\ % ﬁ m — —
» The j particle on site i is equipped with a spin-orientation o; = +1. . 1
» The j particle is further equipped with a species-spin si] = +1;s4 =1, s = —1. = 0 S 0
» No restriction is applied on the number of particles p; = ) ; nJ; on site . _q- w w w w \b w \ 5 > (a) Til.rne-evolution of mp and mp
» Intra-species interactions: Jaa = Jgg = J = 1. exhibits an oscillatory (swap) state.
» Species A aligns with species B with an interaction strength Jag (0 < Jag < J). _20 1295 9250 375 500 —2 T 0 1 9 Pr=22,po = 4 .and INR - 0:1'
» Species B anti-aligns with species A with interaction strength Jga (—] < Jga < 0). t mA > (b) System exhibits stable limit
’]AB — _]BA — ]NR <. (C)103 — (d) 0.6 —F CYCIGS. JNR = 0.1.
» Flipping rate for the spin-orientation (on-site) [2]: o1 > {c) 7 increases exponentially with fi,
PRTE ’ | 9 ~02 0.4 and decreases with JNR.
Wflﬁ(a — —0) =y exp (—ﬂg ’ugff) . - El » (d) m = (my, mp) characterizes the
i 107 =0 L=16 transition between the disordered
» Effective local magnetization: ,inff = Jaama + Japmp, ,uﬁff = JggmB + Jgama, ms=n; —n;. =92 state and jd?e oscillatory state.
» Dimensionless variables: f1 = B/ =T~ ! and v =J/]; y=1 , | 0 | L=u > The transition occurs at fx = 1.94.
» Nearest-neighbor biased hopping in 1d (+ex) [const. hopping rate D along +ey] [2]: 1.8 2.2 2.6 3 I 1ls 2 25 3 > (¢) (INR, f1) state diagram for
B & po = 4. Disorder/oscillatory
Whop(0) =D(1+0e); 0<e<1. (€)0.3 (£) 08 transition line corresponds to Hopt
. . - - - 0.7 disorder bifurcation.
Time-evolution of the NRTSAIM at maximum non-reciprocity 02]  dirir [ > (£) (T3, po) state diagram for
7 %Z | 0.6 oscillatory jNR =0.1.
128 5 0.1 oscillatory ET
64 - 0 0.5
Y0 2% S 768 1024 O 15 1 25 M5 5
» Coupled run-and-chase 1.5 1.75 62 2.20 2.5 0 3 § 9 12
128 1 5 state 1 Po
o4 1 K _ A > Red: Species A Hydrodynamic equations of the NRTSAIM
0L 5 Blue: Species B
0 256 512 768 1024 » Nucleation of an A-band in the » Average particle density pg(x;t) = (n?(x;t)) in state o and species s.

gas phase in front of the
B-band (t = 256)

» To avoid them, B-particles start
to accumulate (t = 512, 1024)

» Substantial accumulation —
denser B-band and slowing
down of band velocity
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» The NRTSAIM exhibits a highly efficient run-and-chase state, where B-particles accumulate at the far
end of the advancing A-band, maximizing their distance.
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