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Introduction

During my internship, I dealt with the glass transition, an important problem because the glassy state exists
everywhere in the matter but there is no theory universally accepted about this state. On the technical aspect, the
difficulties come from the phase transition in presence of disorder and the multiplicity of metastable states.

Many statistical mechanics models are exactly solvable in infinite spatial dimensions. The exact solution has a
mean field structure, and a systematic 1/d expansion around this solution can be obtained in the form of a high
temperature/low density expansion. Examples are the Ising model of magnetic materials, which is described by the
Curie-Weiss mean field theory for d =∞, and a hard sphere liquid, which is described by the Van der Waals equation
of state.

For the glass transition problem, this strategy can be applied to a prototypical glass former, namely hard spheres.
The phase diagram turns out to be similar to the one of a class of spin glass models (p-spin and Potts glasses), thus
confirming the general picture of the Random First Order Transition theory of the glass transition.

The striking difference with respect to ordinary phase transitions is that the glass phase is not a unique phase (like,
e.g. a crystal). In the glassy region of the phase diagram, multiple distinct glass states appear, each characterized by
different thermodynamic properties (e.g. a different equation of state). The glassy phase diagram is thus extremely
complex and characterized by several distinct phase transitions.

The natural question once the d = ∞ solution has been constructed, is to include finite dimensional corrections
in a controlled way. Our approach consists of including quantitative finite dimensional corrections by perturbations,
using the theory of liquids and the replica method explained in the first section. In fact, in d =∞ typically only a few
diagrams of the high temperature/low density expansion are relevant. In finite dimensions, instead, all the diagrams of
the expansion contribute. Including a certain number (or even an infinite class) of diagrams typically does not change
the qualitative phase diagram of the system, which remains the same as in d =∞, but changes the quantitative results
for all the physical quantities (e.g. the transition temperature/density, or the specific heat). Away from the critical
region around a phase transition, the inclusion of a few diagrams gives already quite good results for the Ising model.
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For particle systems, resummation of classes of diagrams are needed, leading to the successful approximations schemes
of standard liquid theory, like the Hypernetted Chain (HNC) or Percus-Yevick (PY) approximations.

The calculation of the phase diagram is thus possible in the approach we developed at all dimensions whereas the
previous approaches only gave some parts of the diagram. The main calculation of the important transition point of
phase diagram is done in the second section after the perturbative derivation. The previous approaches are coherent
with our approach as shown in the begining of section 3. At the end of the third section, the numerical results of
equations derived in the second one will be presented. Finally, in section 4, the derivation of the non-ergodicity factor
will be done in our approach, which could not be done in the previous approaches.

1 Some generalities about liquids and glasses

In this section, I will present some results and derivations needed all along my internship about, first, the theory
of liquids and secondly, about the glass transition, its phase diagram and the useful replica method.

1.1 Theory of liquids

1.1.1 Some definitions

We consider the liquid as an ensemble of N molecules of size σ = 1 which interact with a potential v(r) in an
external field Ψ(r). This potential can be described by different models more or less sophisticated : hard-sphere,
square-well, Yukawa, Lennard-Jones potentials for example. We will consider, for this section, a general form of v(r)
and next, we will be interested only in the simplest one : the hard-sphere potential

vHS(r) =

{
∞ r < σ

0 r > σ
(1.1.1)

The partition function can be written in the grand-canonical ensemble as

ZN =
1

N !
eNβµ

∫
dr1...drN exp

[
−β

(
N∑
i=1

i−1∑
j=1

v(ri − rj)−
N∑
i=1

Ψi

)]
(1.1.2)

We define the n-point correlation functions, also called the n particle densities, as

ρ
(n)
N (r1, ..., rn) =

N !

(N − n)!

1

ZN

∫
drn+1...drN exp

[
−β

(
N∑
i=1

i−1∑
j=1

v(ri − rj)−
N∑
i=1

Ψi

)]
= 〈

∑
i1 6=... 6=in

δ(r1 − ri1)...δ(rn − rin)〉

(1.1.3)
and the pair correlation

g
(n)
N (r1, ..., rn) = ρ−nρ

(n)
N (r1, ..., rn), h

(n)
N (r1, ..., rn) = g

(n)
N (r1, ..., rn)− 1 (1.1.4)

In the following we mostly use ρ(1)
N (r1) ≡ ρ1 ≡ ρ(r), ρ(2)

N (r1, r2) ≡ ρ12 ≡ ρ
(2)
12 (r), g(2)

N (r1, r2) ≡ g12 ≡ g(r) and
h

(2)
N (r1, r2) ≡ h12 ≡ h(r). The density of the liquid will be denoted ρ = 〈ρ(r)〉 and the packing fraction ϕ = Vd(

1
2 )ρ =

π
d
2 ρ

2dΓ( d2−1)
, where Vd(R) is the volume of the d-dimension hypersphere of radius R.

We can finally define the structure factor as S(k) = 〈 1
N ρ(k)ρ(−k)〉 = 1 + ρ

∫
drh(r)e−ikr which is the pair

correlation’s Fourier transform.

1.1.2 The partition function

The derivation of the partition function, from a diagrammatic way, is well done in [HM76, Jac13]. Some steps of
this derivation are reproduced here for a better comprehension of the result and the different approximations. We use
a handy notation :

∫
dr1 ≡

∫
d1, F (r1, r2) ≡ F12 for all functions and for the diagrams, we consider a white node as

a constant equal to 1 without integration, a black node as
∫
d1z1 such that z1 = eβ(µ−Ψ1) = eν1 and a line as

f12 = e−βv12 − 1 = ew12 − 1, the Mayer function. Writing only the contribution with 0, 1, 2 and 3 nodes, the partition
function reduces as,

Z[ν, w] =
1

N !

∫
d1...dN

N∏
i=1

zi
∏
i<j

(1 + fij) = 1 + + + + + + + + ... (1.1.5)

The logarithm of Z, the only function we need to calculate the entropy, reduces to the connected diagrams. We
get at the order 3 in f,

logZ[ν, w] = 1 + + + + + + +O(f4) (1.1.6)
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We introduce then a first Legendre transformation as

Γ1[ρ,w] = logZ[ν∗, w]−
∫
d1ν∗1ρ1,

δ logZ

δν1

∣∣∣∣
ν∗1

= ρ1 (1.1.7)

Taking the functional derivative of logZ with respect to z1, i.e. replacing one black node by a white node, we get

ρ1 = z1
δ logZ[ν, w]

δz1
= z1

(
1 + + + + + + + + +O(f4)

)
(1.1.8)

Taking the logarithm of this expression, i.e. only the diagrams whose the black node chain is connected, we get

ν1 = log ρ1 − − − − − +O(f4) (1.1.9)

Now, we change the variable z, from the equation (1.1.8). The black nodes represent now ρ[ν] and white nodes a
constant equal to 1.

ν∗1 = −δΓ1[ρ,w]

δρ1
= log ρ1 − − +O(f4) (1.1.10)

By integrating, we get then

Γ1[ρ,w] =

∫
d1ρ1(1− log ρ1) + + + + + + ... =

∫
d1ρ1(1− log ρ1) + Γex1 [ρ,w] (1.1.11)

This is the so-called Virial expansion of the liquid theory where
∫
d1ρ1(1− log ρ1) corresponds to the ideal gas. The

only diagrams of ρ nodes and f lines are connected one particle irreducible diagrams. We will perform now a second
Legendre transformation

Γ2[ρ, ρ(2)] = Γ1[ρ,w∗]− 1

2

∫
d1d2w∗12ρ

(2)
12 ,

Γ1[ρ,w]

δw∗12

∣∣∣∣
w∗

12

=
1

2
ρ
(2)
12 (1.1.12)

The two point correlation, using previous rules and the fact that the division by ρ replaces a black node by a white
one, is given by

g12 =
ρ
(2)
12

ρ1ρ2
=

2

ρ1ρ2
(1 + f12)

δΓex1 [ρ,w]

δf12
= ew12(1 + + + + + + +O(ρ3)) (1.1.13)

Taking the logarithm, we get

w12 = log(1 + h12)− − − − − +O(ρ3) (1.1.14)

Now, to perform the Legendre transformation, we replace the lines of f by lines of h using the equation (1.1.13),
we get

h12 = f12 + + + + + + + + + + + + +O(ρ3) (1.1.15)

w∗12 =
δΓ2[ρ, ρ(2)]

δρ(2)
= − 2

ρ1ρ2

δΓ2[ρ, ρ(2)]

δh12
= log(1 + h12)− − − +O(ρ3) (1.1.16)

By integrating, we get then the Morita and Hiroike functional,

Γ2[ρ, ρ(2)] =

∫
d1ρ1(1− log ρ1) +

1

2

∫
d1d2ρ1ρ2[h12 − (1 + h12) · log(1 + h12)] + − + +O(ρ5) (1.1.17)

Γ2[ρ, ρ(2)] =

∫
d1ρ1(1− log ρ1) +

1

2

∫
d1d2ρ1ρ2[h12 − (1 + h12) · log(1 + h12)]

+ − + + {other ring diagrams} + {2PI diagrams}
(1.1.18)

1.1.3 The direct correlation function c(r)

We can also get by definition, the direct correlation from the Virial expansion,

c12 =
δ2Γ1[ρ,w]

δρ1δρ2
= f12 + + + + + +O(ρ3) (1.1.19)

From the equations (1.1.15) and (1.1.16), we get

w∗12 = log(1 + h12)− h12 + c12 + {a class of diagrams} (1.1.20)

This equation can be solved iteratively .We get at the first order

c(r) = h(r)− ρ
∫
dr′h(r − r′)c(r′)⇒ ĥ(k) =

ĉ(k)

1− ρĉ(k)
(1.1.21)

which is the so-called Ornstein-Zernike equation, which says that h − c is the convolution of c with ρh. At the next
orders,

c12 = − + − + ... (1.1.22)
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1.1.4 The Hyper-Netted-Chain (HNC) approximation

The HNC approximation consists in removing all two particle irreducible diagrams. From this, we get the HNC
equation

c(r) = ew(r)eh(r)−c(r) − 1− [h(r)− c(r)] (1.1.23)

from the w∗ equation, removing the class of diagrams. From the equation of Γ2, we get the expression of the entropy

S[ρ, h] =
1

N
logZ[ν, w] =

1

N
Γ1[ρ,w] =

1

N
Γ2[ρ, h] +

1

2N

∫
d1d2w12ρ1ρ2(1 + h12) (1.1.24)

S[ρ, g] =
1

N

∫
drρ(r)[1− log ρ(r)]− 1

2N

∫
dr1dr2ρ(r1)ρ(r2){g(r1, r2)[log g(r1, r2) + βv(r1, r2)− 1] + 1}

+
1

2N

∑
n≥3

(−1)n

n
Trx[ρh]n

(1.1.25)

where Trx[ρh]n is nothing else that the n side ring diagram.

1.1.5 The Percus-Yevick (PY) approximation

The Percus-Yevick approwimation consists to consider that |c−h| is small in the HNC approximation, we get thus

c(r) = [1− e−w(r)] · [1 + h(r)]⇒ c(r) = ew(r) · [1 + h(r)− c(r)]− 1− [h(r)− c(r)] (1.1.26)

This approximation is better than the HNC approximation for the pair correlation but worse for the entropy which
is obtained using the equation (1.1.29) for the Percus-Yevick pair correlation.

1.1.6 The Carnahan-Starling (CS) approximation

In this approximation, we consider only the first three terms of the Virial expansion to calculate the entropy
therefore. The reduced pressure is

p = 1 + 2d−1ϕg(1, ϕ), g(1, ϕ) =
1−Adϕ
(1− ϕ)d

(1.1.27)

where ϕ is the packing fraction and Ad is defined in terms of the second (b) and third (B3) Virial terms defined in
[SMS89]

Ad = d− 2d−1B3

b2
,

B3

b2
= 2

[
1−

Γ(1 + d
2
)

Γ( 1
2
)Γ( d+1

2
)

]
2F1

[
1

2
,

1− d
2

;
3

2
;

1

4

]
(1.1.28)

where 2F1 is the hypergeometric function. Some other values of Ad are obtained in [CIPZ11] by numerical simulations
of the equation of state. From this we can easily get the entropy as

p = −ϕ∂S
∂ϕ

and S(ϕ = 0) ∼ 1− log ρ⇒ S(ϕ) = 1− log ρ− 2d−1

∫ ϕ

0

dϕ′g(1, ϕ′) (1.1.29)

where S(ϕ = 0) is the ideal gas behaviour. We get thus

S(ϕ) = 1− log ρ− 2d−1

(d− 1)(1− ϕ)d−1

{
Ad
d− 2

[
(1− ϕ)d−1 − 1 + ϕ(d− 1)

]
+ (1− ϕ)d−1 − 1

}
(1.1.30)

This particular factorization will be useful for a numerical evaluation of the entropy for small ϕ. From this particular
value of g(1), a new approximation can be derived for g(r) in the special case of dimension 3 (Sec. 1.1.7), but no
generalization exists for other dimensions.

1.1.7 The Verlet-Weis (VW) approximation

This approximation consists to fit as well as possible the pair correlation obtained by computer "experiments"
modifying the Percus-Yevick solution, done in [VW72, HM76]. The solution is taken to have gVW (1) = gCS(1) given
by (1.1.27) and to give a phase shift such that

gVW (r, ϕ) = gPY (ξr, ϕ∗) + δg(r)

δg(r) =
δg1
r

cos[α(r − 1)]e−α(r−1)
(1.1.31)

with in dimension 3, the parameters ϕ∗ = ϕ− ϕ2

16 , ξ =
(
ϕ
ϕ∗

)1/3

, δg1 = gCS(1)−gPY (ξ) and α = 24δg1
ϕ∗gPY (1) . ϕ

∗ is chosen
to achieve a minimum in the absolute difference between the exact function and gPY , δg1 to fit the Carnahan-Starling
equation and α to obtain the correct isothermal compressibility. This result fits the exact computer-generated function
with an error less than 1% for all ϕ.

We try to generalize this, with the same form of g and new values for α = 24δg1
ϕ∗3/dgPY (1)

and ξ =
(
ϕ
ϕ∗

)1/d

, which is
coherent with the d = 3 solution. The behaviour of this solution seems to be good but it is maybe unexact.
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1.2 Generalities about glasses
The glassy state of matter is omnipresent in daily life. It is obtained by cooling a liquid with a fast quench under

the glass temperature Tg defined as the temperature where the relaxation time and thus the viscosity exceeds any
reasonable human timescales. Tg is defined from the viscosity η(Tg) ∼ 1012 Pa.s or the relaxation time τα(Tg) ∼ 100s.
To have this state of the matter, out-of-equilibrium, the crystal must not be formed, in fact, during a fast quench, the
nucleation of the crystal is not thermodynamically favorable. Below Tg, due to the viscosity, any nucleation is stopped.
The glass is a frozen liquid and thus conserves its static properties, like e.g. the pair correlation g(r).

1.2.1 The relaxation time

With the notations of section 1.1, we can define the
mean-square displacement ∆ and the diffusivity D of the
liquid as

∆(t) = 〈 1

N

N∑
i=1

|ri(t)− ri(0)|2〉, D = lim
t→∞

∆(t)

2dt
(1.2.1)

As explained in [BB11, Cav09], the relaxation of a glass
happens in two steps :

1. a relaxation β fast which relaxes the ballistic regime
to a localized regime where ∆ reaches a plateau
(D = 0),

2. a relaxation α slow which relaxes the localized
regime to a diffusive regime.

For a liquid, there is only a fast relaxation from a bal-
listic regime to a diffusive regime. The relaxation time of
α is characteristic of a glass and large compare to the daily
timescale.

The relaxation time τα of the glass can be fitted by
different kind of laws as function of the temperature.

A strong glass-former (e.g. SiO2, GeO2) has the relax-
ation time which follows a purely Arrhenius law

τα = τ0e
βE (1.2.2)

A fragile glass-former (e.g. toluene, o-therphenyl) has a
relaxation time which follows a super-Arrhenius behaviour
characterized by a Vogel-Fulcher-Tamman law

τα = τ0 exp

(
DTg
T − Tg

)
(1.2.3)

This behaviour can be also fitted by a double Arrhe-
nius law, with different parameters, into the two domains
T � Tg and T ∼ Tg.

Some other laws can exist, the Bässler law

τα = τ0 exp

[
K

(
T∗
T

)2
]

(1.2.4)

or another law replacing 1/T by 1/T−1/Ton in the Bässler
law to have a divergence at T 6= 0.

T = 0.41

T =2.0

∼ Dst∼ (vt)2

t/ τ0

∆
(t
)

10−1 101 103 105 107
10−3

10−1

101

Figure 1 – Mean-square displacement of individual par-
ticles of a glass-forming liquid for different temperature
(Figure from [BB11]).

Figure 2 – The two-steps relaxation in the scattering
function Fs(q, t). The behaviour is exponential at high
temperature (Figure from [Cav09]).

Figure 3 – Logarithm of the viscosity vs. the inverse tem-
perature Tg/T , which represents the behaviour of relax-
ation time of liquids close to the glass transition (Figure
from [Cav09]).
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1.2.2 The phase diagram of glasses

As explained in [MP09, PZ10], the phase diagram of a glass has many important domains separated by precise
points, which will interest us all along the next sections. This study can be done by decreasing the temperature or
increasing the pressure or the density (or the packing fraction). For a best view of this, the figure 4 is drawn as
the inverse of the pressure versus the packing fraction but for a better comprehension, the explanation will be done
by decreasing the temperature because many phenomena are better understood at fixed temperature than at fixed
density.

FCC crystal

ideal glass

liquid/solid transition

supercooled liquid
(metastable)

glassy states

metastable solid

liquid
C

C

C

C

C

C

C

L

L

L

L
L

L

L

Figure 4 – Phase diagram of glasses in the representation of the inverse of the pressure (or the temperature) versus
the packing fraction. In the little circles, the free energy behaviour is represented with L corresponding to the liquid
state and C to the crystal state.

We suppose that we start from a temperature higher than the spinodal temperature Tsp of the solid, to be in
a liquid configuration. While T > Tsp, the free energy has only one minimum and corresponds to the liquid state.
Between Tsp and Tf , the freezing temperature, the free energy looses that convexity and a second minimum appears,
which corresponds to the crystal state, with a bigger free energy than the first minimum, which corresponds to the
liquid state.

When T = Tf , the two minima of the free energy have the same value and thus a first order phase transition
happens. If the quench of temperature is fast enough, the liquid does not crystallize at T = Tf (and does not follow
the Maxwell construction of free energy) and so becomes a supercooled liquid which follows the prolongation of the free
energy expression. If the spinodal temperature of the liquid is small enough, the supercooled liquid will not crystallize
before the glass transition.

Between Tf and Td, the dynamical temperature, the free energy has two minima with a global one, which corre-
sponds to the crystal state.

At T = Td, the dynamical transition happens, the liquid minimum divides into an exponentially large number
of minima, each one corresponding to a glassy state. The configurational entropy, or complexity, is defined as the
logarithm of this number of minima, which corresponds to the number of glassy states. At this step, the dynamical
correlation diverges and the first glassy state can appear. If the supercooled liquid transforms into a glass and follows
the glass line, the pressure diverges at the jammed state ϕth corresponding to Td, called the threshold packing fraction.

If the cooling is slow enough, the glass transition can happen between Td and TK , the Kauzmann temperature. The
value of the free energy is still given by the prolongation of the liquid one. The time to go from a minimum to another
is large. The appearence of metastable glassy states in this domains can associate to the supercooled liquid a jammed
state ϕj(T ) obtained by cooling the configuration fast enough. The complexity decreases all along this interval.

At T = TK , the complexity cancels and the liquid disappers for lower temperature. At this point, the thermody-
namical transition happens and the capacity Cv has a jump.

For T < TK , the glass is unique and goes to the jammed state ϕGCP < ϕcrystal, call the close packing fraction, at
zero temperature. At dimension 3, ϕGCP ∼ 0.64 and ϕcrystal ∼ 0.74. This corresponds to the ideal transition, which
is unobservable in practice due to the speed of the quench which is not slow enough.

1.2.3 The replica method

To compute the entropy of the glass, as done in [MP09, PZ10], we introduce m copies ("replicas") of the original
system with an attractive potential ε → 0 between them, to study the auto-induced disorder coming from the many
equilibrium configurations. Historically, the replicas were introduced to calculate the logZ as lim

m→0

∂
∂mZ

m in the spin
glass problem.

The partition function is written as Z = eNS(ϕ) =
∑
α e

Nsα with the sum over the state of vibrational entropy sα.
The configurational entropy or complexity of internal entropy s is defined as

Σ(s, ϕ) =
1

N
logN (s) (1.2.5)
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with N (s) the number of states of entropy s. The partition function becomes Z =
∫
dseN(s+Σ) ∼ eN(s∗+Σ(s∗,ϕ)) with

s∗ the place of the maximum of S(ϕ).
We define thus the replicated partition function as Zm =

∑
α e

Nmsα ∼ eNS(m,ϕ,s∗) with S(m,ϕ, s) = ms+ Σ(s, ϕ)

with s∗(m,ϕ) = ∂S
∂m (m,ϕ, s). From this we define a Legendre transformation to have only (m,ϕ) as parameter. The

complexity becomes

Σ(m,ϕ) = Σ(s∗(m,ϕ), ϕ) = S(m,ϕ)−ms∗(m,ϕ)

s∗(m,ϕ) =
∂S

∂m
(m,ϕ)

(1.2.6)

From this we get the phase diagram (m,ϕ), the mir-
ror of the (p, ϕ) diagram, reproduced in figure 5. For
each density ϕ > ϕTAP , we can define a point ms(ϕ) as
the solution of Σ(m,ϕ) = 0. On this line, we see that
S(m,ϕ) = msmax, then

Sglass(m,ϕ) = smax(ϕ) =
S(ms(ϕ), ϕ)

ms(ϕ)
(1.2.7)

and thus define the ideal glass line. For each density
ϕ > ϕTAP , we can also define a point md(ϕ) which corre-
sponds to the minimum value smin, below which there are
no states. We call md(ϕ) the clustering line because above
this line the space of configuration is disconnected in many
clusters corresponding to the glassy states. All these states
are found between this two lines. The jammed states are
obtained for m = 0 and the equilibrium states for m = 1.

ms

md

Σ>0

Σ<0

m

φφφ

φ

φTAP

K

th GCP

1

0

no solution

φd

Figure 5 – Phase diagram of glasses in the (m,ϕ) space
with the clustering and ideal glass lines (Figure from
[PZ10]).

The m replicas are represented by molecules, described by x̄ = {x1, ..., xm} where xi is a d-dimension vector. The
replicated liquid is characterized by the density ρa(x) = 〈δ(d)(x− xa)〉 of each replica and by the correlation function
ρab(x, y) = 〈δ(d)(x−xa)δ(d)(y−xb)〉. The replicated pair correlation is gab = ρab(x,y)

ρa(x)ρb(y) . If there is a symmetry between
the replicas, ρa(x) = ρ, the intrareplica correlation becomes g(x − y) = gaa(x, y) = ρ−2ρaa(x, y) and the interreplica
correlation becomes g̃(x− y) = ga6=b(x, y) = ρ−2ρa6=b(x, y). Due to the translation invariance , the averages over states
become, ρa(x) = ρ(x), g(x − y) = ρ−2ρaa(x, y) and g̃(x − y) = ρ−2ρa(x)ρa(x). If there is no interaction between
replicas, g̃(x− y) = 1.

The replicated Hyper Netted Chain equations are the same than the liquid one for the intrareplica correlation g(r)
and are replaced for the interreplica correlation g̃(r) by

c̃(r) = h̃(r)− log[1 + h̃(r)] and ˆ̃c(k) =
1− ρĉ(k)

1 + ρ[ĥ(k)− ˆ̃
h(k)]

ˆ̃
h(k) (1.2.8)

where the f̃ functions are the interreplica function corresponding to the intrareplica function f and where the f̂(k)
functions correspond to the Fourier transform of f(r).

2 Derivation of equations for the entropy and the phase diagram

In this section, we will derive the expression of the entropy for the replicated system and from it, deduce the
equations for the complexity and for all quantities of the phase diagram : ϕd, ϕK , ϕth and ϕGCP .

2.1 The replicated entropy
We want to solve this problem introducing m replicas arranged into point-like molecules, if the cage radius A ≡

1
2dN 〈(xa − xb)2〉 is zero, described by x̄ = {x1, ..., xm} where xi is a d-dimension vector.

We start from the expression of the entropy S[ρ, g] of a molecular liquid in term of single-particle density ρ(x̄), the
correlation of two molecules g(x̄, ȳ) and the interaction potential between two molecules v(x̄, ȳ) =

∑m
α=1 v(|xα − yα|).

We neglect the 2PI diagrams and therefore consider the so-called HNC approximation. Using the expression of the
entropy of the liquid (1.1.25) and the replica method, we have

S[ρ, g] =
1

N

∫
dx̄ρ(x̄)[log ρ(x̄)−1]− 1

2N

∫
dx̄dȳρ(x̄)ρ(ȳ){g(x̄, ȳ)[log g(x̄, ȳ)+βv(x̄, ȳ)−1]+1}+ 1

2N

∑
n≥3

(−1)n

n
Trx[ρh]n (2.1.1)

where h(x̄, ȳ) = g(x̄, ȳ)− 1 and Trx[ρh]n =
∫
dx̄1...dx̄nρ(x̄1)h(x̄1, x̄2)ρ(x̄2)h(x̄2, x̄3)...ρ(x̄n)h(x̄n, x̄1).

This expression is variational and should be minimized with respect to ρ and g. We assume, for the single-particle
density, the Gaussian form (2.1.2) and, for the pair correlation factorized form (2.1.3) where G(~r) is an unknown
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function and the contribution of the term in parenthesis is small if A is small, because the Gaussian form forces xa to
be close to X. We define also Q(~r) as (2.1.4) assumed to be small, H = G− 1 and C from (2.1.5).

ρ(x̄) = ρ

∫
ddX

m∏
α=1

γA(xα −X) = ρ
m−d/2

(2πA)(m−1)d/2
exp

− 1

2mA

∑
α<β

(xα − xβ)2

 , γA(u) =
e−

u2

2A

(2πA)d/2
(2.1.2)

g(x̄, ȳ) = ρ−2ρ(x̄)ρ(ȳ)

m∏
α=1

e−βvr(x
α−yα) = G(X − Y ) +

[
m∏
α=1

G(|xα − yα|)1/m −G(X − Y )

]
(2.1.3)

Q(~r) =

(∫
dd~uγ2A(~u)G(~r − ~u)1/m

)m
−G(~r) (2.1.4)

ρ

∫
dd~uH(~r − ~u)C(~u) = H(~r)− C(~r) (2.1.5)

With these approximations, we can expand at the first order in Q
1

N

∫
dx̄ρ(x̄)[log ρ(x̄)− 1] = 1− log ρ+

d

2
(m− 1) log(2πA) +

d

2
(m− 1 + logm)

1

N

∫
dx̄dȳρ(x̄)ρ(ȳ)g(x̄, ȳ) = ρ

∫
dd~r[G(~r) +Q(~r)]

1

2N

∫
dx̄dȳρ(x̄)ρ(ȳ)g(x̄, ȳ)[log g(x̄, ȳ) + βv(x̄, ȳ)] = ρ

∫
dd~r[G(~r) +Q(~r)] · [logG(~r) + βmv(~r)]

1

N

∑
n≥3

(−1)n

n
Trx[ρh]n =

1

N

∑
n≥3

(−1)n

n
TrxH

n − ρ
∫
dd~rQ(~r)[H(~r)− C(~r)]

(2.1.6)

Collecting all the terms, using the HNC equation (1.1.23,2.1.7) and the relation (2.1.8), we obtain a straightforward
optimization over G(r)

logG(~r) + βmv(~r)−H(~r) + C(~r) = 0 (2.1.7)

1

N

∑
n≥3

(−1)n

n
TrxH

n =
1

ρ

∫
dd~k

(2π)d
[log(1 + ρĤ(~k))− ρĤ(~k) +

1

2
ρ2Ĥ(~k)2], Ĥ(~k) =

∫
dd~rei

~k·~rH(~r) (2.1.8)

In fact, at the lowest order, the correction Gm(A,ϕ) of S[ρ, g] = S(m,A;T, ϕ) as defined in (2.1.10) is not needed
and therefore we simply obtain

G(r) = gliq(r;
T

m
,ϕ), Ĥ(k) = ĥliq(r;

T

m
,ϕ) (2.1.9)

where gliq is the correlation function of the normal liquid with potential v at temperature T = 1/β and packing
fraction ϕ.

The result of this procedure for the replicated entropy is the following, where In(x) is the modified Bessel function.

S(m,A;T, ϕ) = SHNCliq (ϕ) + Sharm(m,A) + 2d−1ϕGm(A,ϕ)

SHNCliq (ϕ) = 1− log ρ− 2d−1ϕd

∫ ∞
0

drrd−1

{
gliq(r;

T

m
,ϕ)

[
log gliq(r;

T

m
,ϕ) + βmv(r)− 1

]
+ 1

}
+

2d−1ϕd

(2π)dρ2

∫ ∞
0

dkkd−1

[
log(1 + ρĥliq(k;

T

m
,ϕ))− ρĥliq(k;

T

m
,ϕ) +

1

2
(ρĥliq(k;

T

m
,ϕ))2

]
Sharm(m,A) =

d

2
(m− 1) log(2πA) +

d

2
(m− 1 + logm)

G(m,A,ϕ) = d

∫ ∞
0

drrd−1Q(r) = d

∫ ∞
0

drrd−1

[
qA,m(r, ϕ)m − gliq(r;

T

m
,ϕ)

]

qA,m(r, ϕ) =

∫
d~uγA(~r − ~u)gliq(~u;

T

m
,ϕ)

1
m =

∫ ∞
0

dugliq(u;
T

m
,ϕ)

1
m

(u
r

) d−1
2 e−

(r−u)2
4A

√
4πA

[
e−

ru
2A

√
π
ru

A
I d−2

2

( ru
2A

)]
(2.1.10)

From now on, we will consider hard spheres and thus T = 0 and βmv(r)gliq(r;
T
m , ϕ) = 0.

2.2 The equation for A

From the equations (2.1.10) we can derive the equation for A from the condition ∂S
∂A = 0, which reads

1 =
2dϕ

d

A

1−m
∂Gm
∂A

(A,ϕ) =
2dϕ

d
Fm(A,ϕ)

Fm(A,ϕ) =
dAm

1−m

∫ ∞
0

drrd−1 ∂qA,m
∂A

(r, ϕ)qA,m(r, ϕ)m−1

(2.2.1)

For a fixed m, Fm(A,ϕ) presents a maximum which determines the clustering line : if the equations (2.2.1) do not
have any solution, the packing fraction ϕ corresponds to a liquid state, otherwise it corresponds to a glassy state.

Thus, the equation for the clustering line is

1 =
2dϕ

d
max
A

Fm(A,ϕ) (2.2.2)
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2.3 The complexity

From the equations (1.2.6) and (2.1.10) we can derive the equation for the complexity as follows

Σm(A,ϕ) = S(m,A,ϕ)−m ∂S

∂m
(m,A,ϕ) = Sliq(ϕ)− d

2
log(2πA) +

d

2
(logm− 2) + 2d−1ϕHm(A,ϕ)

Hm(A,ϕ) = d

∫ ∞
0

drrd−1[qA,m(r, ϕ)m − gliq(r, ϕ)−m2 ∂qA,m
∂m

(r, ϕ)qm−1
A,m (r, ϕ)−mqA,m(r, ϕ)m log qA,m(r, ϕ)]

(2.3.1)

The complexity exists only if A is a solution of (2.2.1). A glassy state exists only if the complexity is positive. We
define the ideal glass line, the highest density at which a glass can be formed at a fixed pression, as the solution of
Σm(A,ϕ) = 0.

Thus, the equation for the ideal glass line is

Σm(A,ϕ) = Sliq(ϕ)− d

2
log(2πA) +

d

2
logm− d+ 2d−1ϕHm(A,ϕ) = 0 (2.3.2)

2.4 The equilibrium equations (ϕd,ϕK)
The equilibrium line is defined by m = 1, as seen in Figure 5. The packing fraction corresponding to the clustering

line is the dynamical packing fraction ϕd and the one corresponding to the ideal glass line is the Kauzmann packing
fraction ϕK .

From the equations (2.2.1) and (2.2.2) we get the equations for ϕd

1 =
2dϕ

d
max
A

F1(A,ϕ), F1(A,ϕ) = −dA
∫ ∞
0

drrd−1 ∂qA
∂A

(r, ϕ) log qA(r, ϕ) (2.4.1)

From the equations (2.2.1) and (2.3.2) we get the equations for ϕK , using the fact that
∫
d~rqA,1(~r, ϕ) =

∫
d~rgliq(~r, ϕ)

Σeq(A,ϕ) = Σ1(A,ϕ) = Sliq(ϕ)− d

2
log(2πA)− d− 2d−1dϕ

∫ ∞
0

drrd−1[qA(r, ϕ) log qA(r, ϕ) + q̃A(r, ϕ)] = 0

1 = −dA2dϕ

d

∫ ∞
0

drrd−1 ∂qA
∂A

(r, ϕ) log qA(r, ϕ)

(2.4.2)

where the expression of qA(r, ϕ), ∂qA∂A (r, ϕ) and q̃A(r, ϕ) are

qA(r, ϕ) =

∫ ∞
0

dugliq(u, ϕ)
(u
r

) d−1
2 e−

(r−u)2
4A

√
4πA

[
e−

ru
2A

√
π
ru

A
I d−2

2

( ru
2A

)]
∂qA
∂A

(r, ϕ) =

∫ ∞
0

dugliq(u, ϕ)
(u
r

) d−1
2 e−

(r−u)2
4A

√
4πA

1

4A2

{
e−

ru
2A

√
π
ru

A

[
(r2 + u2 − 2dA)I d−2

2

( ru
2A

)
− 2ruI d

2

( ru
2A

)]}

q̃A(r, ϕ) = −
∫ ∞
0

dugliq(u, ϕ) log gliq(u, ϕ)
(u
r

) d−1
2 e−

(r−u)2
4A

√
4πA

[
e−

ru
2A

√
π
ru

A
I d−2

2

( ru
2A

)]
(2.4.3)

2.5 The jamming equations (ϕth,ϕGCP )
The jamming line is defined by m = 0. The packing fraction corresponding to the clustering line is the threshold

packing fraction ϕth and the one corresponding to the ideal glass line is the Glass Close Packing fraction ϕGCP . When
m vanishes, A behaves as A = mα.

Using lim
z→∞

√
2πzezIn(z) = 1 and gliq(r, ϕ) = 0 for r ∈ [0, 1[, we get

lim
m→0

qA,m(r, ϕ) = lim
m→0

∫ ∞
1

dugliq(u, ϕ)
1
m

(u
r

) d−1
2 e−

(r−u)2
4mα

√
4πmα

=


lim
m→0

gliq(r, ϕ)
1
m r > 1

lim
m→0

gliq(1, ϕ)
1
m
(
1
r

) d−1
2 e

− (r−1)2

4mα√
4πmα

r < 1
(2.5.1)

− lim
m→0

m2 ∂qA,m
∂m

(r, ϕ) =


lim
m→0

gliq(r, ϕ)
1
m log gliq(r, ϕ) r > 1

lim
m→0

gliq(1, ϕ)
1
m log gliq(1, ϕ)

(
1
r

) d−1
2 e

− (r−1)2

4mα√
4πmα

r < 1
(2.5.2)

lim
m→0

qA,m(r, ϕ)m =

{
gliq(r, ϕ) r > 1

gliq(1, ϕ)e−
(r−1)2

4α r < 1
(2.5.3)

We obtain then the equation for F0(α,ϕ) from (2.2.1), H0(α,ϕ) and Σj(α,ϕ) from (2.3.1) using the fact that
F0(α,ϕ) · 2dϕ

d = 1,

F0(α,ϕ) = lim
m→0,A=αm

dA

1−m
∂

∂A

∫ ∞
0

drrd−1[qA,m(r, ϕ)m − gliq(r, ϕ)] = dα
∂

∂α

∫ 1

0

drrd−1gliq(1, ϕ)e−
(r−1)2

4α

=
d

4α
gliq(1, ϕ)

∫ 1

0

drrd−1(r − 1)2e−
(r−1)2

4α

(2.5.4)
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H0(α,ϕ) = lim
m→0,A=αm

d

∫ ∞
0

drrd−1

{
qA,m(r, ϕ)m

[
1− m2

qA,m(r, ϕ)

∂qA,m
∂m

(r, ϕ)− log qA,m(r, ϕ)m
]
− gliq(r, ϕ)

}
= dgliq(1, ϕ)

∫ 1

0

drrd−1e−
(r−1)2

4α

[
1 +

(r − 1)2

4α

]
= dgliq(1, ϕ)

∫ 1

0

drrd−1e−
(r−1)2

4α +
d

2dϕ

(2.5.5)

Σj(α,ϕ)− Sliq(ϕ) = −d
2

log(2πα)− d+ 2d−1ϕH0(α,ϕ) = −d
2

[log(2πα) + 1] + 2d−1dϕgliq(1, ϕ)

∫ 1

0

drrd−1e−
(r−1)2

4α (2.5.6)

From the equations (2.2.1) and (2.2.2) we get then the equation for ϕth

1 =
2dϕ

d
max
α

F0(α,ϕ), F0(α,ϕ) =
d

4α
gliq(1, ϕ)

∫ 1

0

drrd−1(r − 1)2e−
(r−1)2

4α (2.5.7)

From the equations (2.2.1) and (2.3.2) we get then the equation for ϕGCP

Σj(α,ϕ) = lim
m→0

Σm(mα,ϕ) = Sliq(ϕ)− d

2
[log(2πα) + 1] + 2d−1dϕgliq(1, ϕ)

∫ 1

0

drrd−1e−
(r−1)2

4α = 0

1 =
2dϕ

d

d

4α
gliq(1, ϕ)

∫ 1

0

drrd−1(r − 1)2e−
(r−1)2

4α

(2.5.8)

3 Dimensional behaviour of the phase diagram

In this section, we will start to verify the consistency of the derived equations with previous approaches as the
high-dimensional bahaviour and the small cage expansion done in [PZ10]. We will finish by showing the numerical
solution of these derived equations to get the different densities ϕd, ϕK , ϕth and ϕGCP .

3.1 Asymptotic behaviour
Here, we will derive the asymptotic behaviour of different densities. Some parts of this calculation and the next

results can be found in [PZ10].

3.1.1 Derivation of qA(r)

When d→∞, A vanishes as A = Â
d2 form [PZ10]. Thus, in qA,m, we need to evaluate the behaviour of I d−2

2
(d2z)

with z = ru
2Â

a fixed parameter.

In(x) =
1

2πi

∫ ∞
0

dtt−(n+1)e
x
2 (t+ 1

t ) ⇒ I d−2
2

(d2z) =
1

2πi

∫ ∞
0

dtt−
d
2 e

d2z
2 (t+ 1

t ) (3.1.1)

For d→∞, we can use the saddle-point method such that

I d−2
2

(d2z) =
1

2πi

∫ ∞
−∞

dte−df(z,t) =
1√

−2πzf ′′(z, t0)
e−df(z,t0), f(z, t) =

1

2

[
log t− dz

(
t+

1

t

)]
and f ′(z, t0) = 0 (3.1.2)

In this case, we get at the first orders in 1/d,

f ′(z, t0) =
1

2

[
1

t0
− dz

(
1− 1

t20

)]
= 0⇒ t0 =

1 +
√

1 + 4d2z2

2dz
∼ 1 +

1

2dz
+

1

8d2z2

f(z, t0) =
1

2

[
log t0 − dz

(
t0 +

1

t0

)]
∼ −dz +

1

8dz

f ′′(z, t0) = −1

2

(
1

t20
− 2dz

t30

)
∼ −dz + 1− 5

8dz

(3.1.3)

Thus, the high-dimension behaviour of the modified Bessel function is

I d−2
2

(d2z) =
1√

2πd2z
ed

2z− 1
8z (3.1.4)

From this computation, we can now evaluate qA,m for d → ∞, putting gliq(r, ϕ) = θ(r − 1) (thus qA,m does not
depend on m anymore) and A = Â

d2

qA(r) = d

∫ ∞
1

du
(u
r

) d−1
2 e

− d
2(r−u)2

4Â√
4πÂ

e−
Â

4ru (3.1.5)

Taking the change of variables (used all along this section), t = d(r−1)√
4Â

= y√
4Â

and s = d(u−1)√
4Â

, we get

qA(t) =

∫ ∞
0

ds√
π
e−(s−t−

√
Â
2

)2 =

∫ ∞
t+

√
Â
2

ds√
π
e−s

2

= Θ

(
t+

√
Â

2

)
, qA(y) = Θ

(
y + Â√

4Â

)
(3.1.6)

with Θ(t) = 1
2 (1 + erf(t))
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3.1.2 Derivation of Sliq(ϕ)

From the definition of the entropy of the liquid (1.1.29), we get for gliq(1, ϕ) = 1

Sliq(ϕ) = 1− log ρ− 2d−1

∫ ϕ

0

dϕ′gliq(1, ϕ
′) = 1− log ρ− 2d−1ϕ (3.1.7)

Taking ϕ̂ = 2d

d ϕ and ρ = 2dϕ
πd/2

Γ(d2 + 1),

Sliq(ϕ) = 1− log

[
ϕ̂d

πd/2
Γ

(
d

2
+ 1

)]
− d

2
ϕ̂ (3.1.8)

From the Stirling formula, we get finally

Sliq(ϕ) = 1− log(
√
πd3ϕ̂) +

d

2

[
log

(
2π

d

)
+ 1− ϕ̂

]
(3.1.9)

3.1.3 Derivation of densities

Dynamical and threshold packing fractions

Using the expression of qA and gliq(1, ϕ) = 1, we get the expressions of F1 from (2.4.1) and F0 from (2.5.7)

F1(A,ϕ) = −dA
∫ ∞
0

drrd−1 ∂qA
∂A

(r, ϕ) log qA(r, ϕ) = −Â
∫ ∞
−∞

dyey
∂

∂Â
Θ

(
y + Â√

4Â

)
log Θ

(
y + Â√

4Â

)

=
1

4
√
πÂ

∫ ∞
−∞

dy(y − Â)e
− (y−Â)2

4Â log Θ

(
y + Â√

4Â

)
=

√
Â

π

∫ ∞
−∞

dtte−t
2

log Θ
(
t+

√
Â
)

F0(α,ϕ) =
d

4α
gliq(1, ϕ)

∫ 1

0

drrd−1(r − 1)2e−
(r−1)2

4α =
1

4α̂

∫ ∞
0

dyy2e−y−
y2

4α̂ = −α̂+ (1 + 2α̂)
√
α̂eα̂

∫ ∞
√
α̂

dte−t
2

(3.1.10)

From this, we get the high-dimensional behaviour of ϕd and ϕth

ϕd =
d

2d
ϕ̂d, lim

d→∞
ϕ̂−1
d = max

Â

√
Â

π

∫ ∞
−∞

dtte−t
2

log Θ
(
t+

√
Â
)

(3.1.11)

ϕth =
d

2d
ϕ̂th, lim

d→∞
ϕ̂−1
th = max

α̂

[
−α̂+ (1 + 2α̂)

√
πα̂eα̂Θ

(
−
√
α̂
)]

(3.1.12)

With a numerical analysis, we get

lim
d→∞

ϕ̂d = 4.8067787, lim
d→∞

Âd = 0.5766799 (3.1.13)

lim
d→∞

ϕ̂th = 6.2581221, lim
d→∞

α̂th = 0.3024338 (3.1.14)

Kauzmann and close packing fractions

Using the expression of qA and Sliq, we can derive the expression of Σeq from (2.4.2),

Σeq(A,ϕ) = Sliq(ϕ)− d

2
log(2πA)− d− 2d−1dϕ

∫ ∞
0

drrd−1 [qA(r, ϕ) log qA(r, ϕ) + gliq(r, ϕ) log gliq(r, ϕ)]

= 1− log(
√
πd3ϕ̂) +

d

2

{
log

d

Â
− 1− ϕ̂

[
1 +

∫ ∞
−∞

dyeyΘ

(
y + Â√

4Â

)
log Θ

(
y + Â√

4Â

)]} (3.1.15)

Thus the equations for ϕK , in the high-dimensional expansion, are

ϕ̂ =
log d

Â
− 1 + 2

d

[
1− log(

√
πd3ϕ̂)

]
1 +

∫∞
−∞ dye

yΘ

(
y+Â√

4Â

)
log Θ

(
y+Â√

4Â

) and 1 = ϕ̂F1(Â) = ϕ̂

√
Â

π

∫ ∞
−∞

dtte−t
2

log Θ
(
t+

√
Â
)

(3.1.16)

At the first order in Â, the second equation behaves as ϕ̂ ∼ Â−1/2. So, with the first equation, we get at the first
order in the dimension ϕ̂K ∼ log d and thus, ÂK ∼ (log d)−2, which is consistent with the first order expansion in Â.
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Using the expression of qA and Sliq, we can derive also the expression of Σj from (2.5.8),

Σj(α,ϕ) = Sliq(ϕ)− d

2
[log(2πα) + 1] + 2d−1dϕgliq(1, ϕ)

∫ 1

0

drrd−1e−
(r−1)2

4α

= 1− log(
√
πd3ϕ̂) +

d

2

{
log

d

α̂
− ϕ̂

[
1−

∫ ∞
0

dye−y−
y2

4α̂

]}
= 1− log(

√
πd3ϕ̂) +

d

2

{
log

d

α̂
− ϕ̂

[
1−
√

4πα̂eα̂Θ(−
√
α̂)
]} (3.1.17)

Thus the equations for ϕGCP , in the high-dimensional expansion, are

ϕ̂ =
log d

α̂
+ d

2

[
1− log(

√
πd3ϕ̂)

]
1−
√

4πα̂eα̂Θ(−
√
α̂)

and 1 = ϕ̂F0(α̂) = −α̂+ (1 + 2α̂)
√
πα̂eα̂Θ

(
−
√
α̂
)

(3.1.18)

At the first order in α̂, the second equation behaves as ϕ̂ = 2√
πα̂
∼ α̂−1/2. So, with the first equation, we get at the

first order in the dimension ϕ̂GCP = log d and thus, α̂ = 4
π(log d)2 , which is consistent with the first order expansion in

α̂.

3.2 Small cage expansion
As seen in the previous section, the cage A decreases with the dimension, so in this section, we will derive the

complexities Σeq and Σj at the first order in
√
A to obtain the equation of ϕK and ϕGCP respectively.

3.2.1 Derivation of Σeq and ϕK

Before computing the expansion of Σeq, we need to compute the expansion at the first order in
√
A of qA(r, ϕ) and

∂qA
∂A (r, ϕ). First, the expansion of Bessel functions is

e−x
√

2πxIn(x) = 1 +
1− n2

2x
+

(n+ 1)2

8x2
(2n2 + 2n+ 3) +O(x3)⇒ e−

ru
2A

√
π
ru

A
In
( ru

2A

)
= 1 +

1− n2

ru
A+O(A2) (3.2.1)

When r > 1 + O(
√
A), we can take the behaviour of the Gaussian as a δ function (because gliq is derivable) and

thus, we get at the first order in A,

qA(r, ϕ) = gliq(r, ϕ) +O(A)

q̃A(r, ϕ) = −gliq(r, ϕ) log gliq(r, ϕ) +O(A)

∂qA
∂A

(r, ϕ) = gliq(r, ϕ)
1

2A2

[
(r2 − dA) ·

(
1 +

1− (d/2− 1)2

r2
A

)
− r2 ·

(
1 +

1− (d/2)2

r2
A

)
+O(A2)

]
= − 1

2A
gliq(r, ϕ) +O(1)

(3.2.2)

and when r < 1−O(
√
A), with the same argument and from gliq(r, ϕ) = 0, qA(r, ϕ) = 0, q̃A(r, ϕ) = 0 and ∂qA

∂A (r, ϕ) = 0.
For |r− 1| < O(

√
A), we can take the usual changes of variables t = r−1√

4A
and s = u−1√

4A
, at the first order in A, we

get

qA(t, ϕ) =
√

4A

∫ ∞
0

dsgliq(1 + s
√
A,ϕ)

(
1 + s

√
A

1 + t
√
A

) d−1
2 e−(s−t)2

√
4πA

[1 +O(A)]

= gliq(1, ϕ)

∫ t

−∞

ds√
π
e−s

2

+O(
√
A) = gliq(1, ϕ)Θ(t) +O(

√
A)

q̃A(t, ϕ) = −gliq(1, ϕ) log gliq(1, ϕ)Θ(t) +O(
√
A)

∂qA
∂A

(t, ϕ) =
gliq(1, ϕ)

A

∫ t

−∞

ds√
π

(s2 − 1

2
)e−s

2

+O(
1√
A

) = −gliq(1, ϕ)

2
√
πA

te−t
2

+O(
1√
A

)

(3.2.3)

with the same kind of calculation for the three computations, but taking the first order of Bessel function into account
for the ∂qA

∂A one.
From the equation over A in (2.4.2), we get at the first order in

√
A, with ϕ̂ = 2dϕ

d ,

1 = −ϕ̂dA
∫ 1+O(

√
A)

1−O(
√
A)

drrd−1 ∂qA
∂A

(r, ϕ) log qA(r, ϕ) = ϕ̂d
√

4A

∫ +∞

−∞
dt
gliq(1, ϕ)

2
√
π

te−t
2

log(gliq(1, ϕ)Θ(t))

= ϕ̂d
√
Agliq(1, ϕ)

∫ +∞

−∞
dtt

dΘ

dt
(t) log Θ(t) = −ϕ̂d

√
Agliq(1, ϕ)

∫ +∞

−∞
dtΘ(t) log Θ(t) = ϕ̂d

√
Agliq(1, ϕ)Q0

⇒
√
A =

1

ϕ̂dgliq(1, ϕ)Q0
with Q0 = −

∫ +∞

−∞
dtΘ(t) log Θ(t) = 0.63865692

(3.2.4)
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From this value of A and the equation of Σeq in (2.4.2), we get its expression at the first order in
√
A,

Σeq(A,ϕ) = Sliq(ϕ)− d

2
log(2πA)− d− 1

2
ϕ̂d2

∫ 1+O(
√
A)

1−O(
√
A)

drrd−1[qA(r, ϕ) log qA(r, ϕ) + q̃A(r, ϕ)]

= Sliq(ϕ)− d log(
√

2πA)− d− ϕ̂d2
√
A

∫ +∞

−∞
dtgliq(1, ϕ)Θ(t)[log(gliq(1, ϕ)Θ(t))− log gliq(1, ϕ)]

= Sliq(ϕ)− d log(
√

2πA)− d+ ϕ̂d2
√
Agliq(1, ϕ)Q0

(3.2.5)

Σeq(ϕ) = Sliq(ϕ)− d log

( √
2π

ϕ̂dgliq(1, ϕ)Q0

)
(3.2.6)

The value of ϕK in this expansion is obtained by solving Σeq(ϕ) = 0 with the equation (3.2.6) implicit in ϕ but
with no dependance in A. This result is the same than the one computed in [PZ10].

3.2.2 Derivation of Σj and ϕGCP

From the equation over α in (2.5.8), we get at the first order in
√
α,

1 = ϕ̂dgliq(1, ϕ)

∫ 1

0

drrd−1 (r − 1)2

4α
e−

(r−1)2

4α = ϕ̂dgliq(1, ϕ)
√

4α

∫ ∞
0

dtt2e−t
2

⇒
√
πα =

2

dgliq(1, ϕ)ϕ̂
(3.2.7)

with the usual change of variables t = r−1√
4α

and ϕ̂ = 2dϕ
d .

From this value of α and the equation of Σj in (2.5.8), we get its expression at the first order in
√
α,

Σj(α,ϕ) = Sliq(ϕ)− d

2
[log(2πα) + 1] +

1

2
ϕ̂d2gliq(1, ϕ)

∫ 1

0

drrd−1e−
(r−1)2

4α

= Sliq(ϕ)− d log(
√

2πα)− d

2
+ ϕ̂d2gliq(1, ϕ)

√
α

∫ ∞
0

dte−t
2

(3.2.8)

Σj(ϕ) = Sliq(ϕ)− d log

(
2
√

2

dgliq(1, ϕ)ϕ̂

)
+
d

2
(3.2.9)

The value of ϕGCP in this expansion is obtained by solving Σj(ϕ) = 0 with the equation (3.2.9) implicit in ϕ but
with no dependance in α. This result is the same than the one computed in [PZ10].

3.3 Computation for finite dimension
The numerical resolution of equations of ϕd, ϕK , ϕth and ϕGCP needs the computation of the pair correlation

gliq(r, ϕ) by an iterative algorithm and needs also some other basic algorithm. After having given this algorithm, I will
show the results for the different densities.

3.3.1 Algorithm for gliq(r, ϕ)

The equation to get gliq(r, ϕ), derived in the section 1.1, can be reexpressed for the hard-sphere potential. We
define as straightforward function γ(r) = h(r)− c(r). The Hyper Netted Chain equation (1.1.23) becomes

c(r) = e−βv(r)eh(r)−c(r) − 1− [h(r)− c(r)] = eγ(r)−βv(r) − 1− γ(r) =

{
−1− γ(r) r < 1

eγ(r) − 1− γ(r) r > 1
(3.3.1)

the Percus-Yevick equation (1.1.26) becomes

c(r) = e−βv(r)[1 + h(r)− c(r)]− 1− [h(r)− c(r)] = e−βv(r)[1 + γ(r)]− 1− γ(r) =

{
−1− γ(r) r < 1

0 r > 1
(3.3.2)

and the Ornstein-Zernike equation (1.1.21) becomes

γ̂(k) = ĥ(k)− ĉ(k) =
ĉ(k)

1− ρĉ(k)
− ĉ(k) =

ρĉ(k)2

1− ρĉ(k)
(3.3.3)

Discrete Fourier transformation

To solve these equation iteratively, we need to perform a discrete Fourier transformation in d dimension. The
function c and γ are radial thus, in this case, we need to perform a Hankel transformation such that (for any radial
function f which can represent c or γ),

f̂(k) =
(2π)

d
2

k
d
2
−1

∫ ∞
0

drr
d
2 J d

2
−1(kr)f(r), f(r) =

(2π)−
d
2

r
d
2
−1

∫ ∞
0

dkk
d
2 J d

2
−1(kr)f̂(k) (3.3.4)
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To simplify these equations, we can define new functions F (r) = r
d
2−1f(r) and F̂ (k) = k

d
2−1f̂(k), we get thus

F̂ (k) = (2π)
d
2

∫ ∞
0

drrJ d
2
−1(kr)F (r), F (r) = (2π)−

d
2

∫ ∞
0

dkkJ d
2
−1(kr)F̂ (k) (3.3.5)

The orthogonality of Hankel transformations∫ ∞
0

drrJ d
2
−1(kr)J d

2
−1(k′r) =

δ(k − k′)
k

(3.3.6)

permits to assure the consistency of previous equations. We need now to discretize these equations on a grid of N
elements with r in an interval [0, Rmax] and k in an interval [0,Kmax] to solve the problem numerically. But, we need
to preserve this orthogonality ! A good way to do this is to cut the intervals in the zeros of the (d2 − 1)th order Bessel
function. We call λi the ith zero of J d

2−1, such that λi 6= 0. We take thus ri = λi
Kmax

and ki = λi
Rmax

. Rmax and Kmax

are thus related as Rmax ·Kmax = λN .
The equations (3.3.5) transform as

F̂ (ki) =

N∑
j=1

(RK)ijF (rj), (RK)ij =
2(2π)

d
2

Kmax
2

J d
2
−1(kirj)

J d
2

(Kmaxrj)2

F (ri) =

N∑
j=1

(KR)ijF̂ (rj), (KR)ij =
2(2π)−

d
2

Rmax
2

J d
2
−1(kjri)

J d
2

(Rmaxkj)2

(3.3.7)

When N is large, the continuous and the discrete version are equivalent, using the asymptotic expression

J d
2

(x) =

√
2

πx
cos(x−(d−1)

π

4
) and λi = (i+

d− 3

4
)π ⇒ J d

2
(Kmaxrj)

2 ∼ 2

πKmaxri
and J d

2
(Rmaxkj)

2 ∼ 2

πRmaxkj
(3.3.8)

From this, we get the equivalence of formulas

F̂ (ki) ∼
π(2π)

d
2

Kmax

N∑
j=1

rjF (rj)J d
2
−1(kirj) ∼ (2π)

d
2

∫ Rmax

0

drrJ d
2
−1(kjr)F (r)

F (ri) ∼
π(2π)−

d
2

Rmax

N∑
j=1

kjF̂ (kj)J d
2
−1(kjri) ∼ (2π)−

d
2

∫ Kmax

0

dkkJ d
2
−1(kri)F̂ (k)

(3.3.9)

and the consistency property, using xi = λi/λN

F (ri) ∼
π2

λN

∑
j,l

rlkjF (rl)J d
2
−1(klrj)J d

2
−1(kjri) = π2

∑
j,l

λlxjF (rl)J d
2
−1(λlxj)J d

2
−1(λixj)

∼
∑
l

F (rl)λl

∫ 1

0

dxxJ d
2
−1(λlx)J d

2
−1(λix) =

∑
l

F (rl)δil

(3.3.10)

Algorithm for gliq

For the Hyper Netted Chain and the Percus-Yevick approximation, the next iterative algorithm is applied to get
gliq(r)

1. Give some arguments : d, N , Rmax and ρ.
2. Evaluate {λi}, Kmax, {ri}, {ki}, (RK) and (KR) and keep them in memory (dependance on d, N , Rmax only).
3. Take an initial form of γ : here we use γ(r) = 0.
4. Do a recursive sequence to evaluate γ and c :

(a) Evaluate c from HNC or PY equation.

(b) Evaluate C(ri) = r
d
2−1
i c(ri), Ĉ(ki) with (RK) from (3.3.7) and ĉ(ki) = k

1− d2
i Ĉ(ki).

(c) Evaluate γ̂ with OZ equation.

(d) Evaluate Γ̂(ki) = k
d
2−1
i γ̂(ki), Γ(ri) with (KR) from (3.3.7) and γ(ri) = r

1− d2
i Γ(ri).

(e) Guess a new value of γ from γ(r) = (1 − α)γold(r) + αγnew(r), for α small to have a convergence of the
algorithm. A faster method consists to use the DIIS algorithm which takes the value of γ in last n steps.

(f) The iteration stops when |γold − γnew| < 10−10.
5. Return g(r) = γ(r) + c(r) + 1 as a linear interpolation of its discretized values, with a precaution at the

discontinuity in r = 1 : g(r < 0) = 0 and g(1+) is evaluated with the next linear interpolation.

For the Verlet-Weis approximation, the algorithm is applied to find gPY at ϕ∗ and the pair correlation function is
obtained with the equation (1.1.31).

For a computer of 3.5 GHz CPU, the initialization step 2. costs about 30 seconds and the converging sequence
needs 10 seconds for N = 3000, and for a C++ code using the GSL library to compute Bessel functions.
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Results in dimension 3

In dimension 3, as in all dimensions, the pair correlation decreases through θ(r−1) for a small density. In the special
case of the third dimension, the value in 1 is bigger for the HNC approximation and smaller for the PY approximation
than for the VW one.
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Figure 6 – Pair correlation for different approximation at
d = 3 for ϕ = 0.6
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Figure 7 – Pair correlation in HNC approximation for
d = 3

3.3.2 Algorithm to compute the densities

To compute the different densities, we need three particular algorithms to integrate, to inverse a function and to
compute the maximum of a function with an efficiently way due to the difficulty to evaluate the function.

Integration algorithm

After taking the change of variable of (t, s), we need just to integrate a Gaussian function centered in zero multiplied
by a constant sign function which evolves slowly. We can thus integrate, starting from the center of the integral until
that the value of the function becomes negligeable (less than 10−10 of the value of the integral). The integral of a
function f between a and b is calculated by discretizing the interval into N subinterval of constant size dx = b−a

N . The
trapeze method gives ∫ b

a

dxf(x) =
f(a)

2
+

N−1∑
i=1

f(a+ i · dx) +
f(b)

2
+O(dx2) (3.3.11)

The Simpson method, more precise, gives for an even N∫ b

a

dxf(x) =
f(a)

3
+

2

3

N/2−1∑
i=0

f(a+ (2i+ 1) · dx) +
4

3

N/2−1∑
i=1

f(a+ 2i · dx) +
f(b)

3
+O(dx3) (3.3.12)

Inversion algorithm

To calculate the inverse of a function f at α, i.e. find x such that f(x) = α, we compute the bissection algorithm
in g(x) = f(x)−α = 0. For n evalutation of f , the gain of precision ε of the solution is 21−n starting from an interval
[a, b]. We have thus n = 1− log2 ε. The bissection agorithm is given by :

1. Evaluate and keep in memory g(a) and g(b).

2. If g(a) · g(b) < 0 and while 2(b−a)
a+b < ε do

(a) Evaluate and keep in memory g(c = a+b
2 ).

(b) If g(a) · g(c) < 0 then {b := c and g(b) := g(c)} else {a := c and g(a) := g(c)}.
3. Return a+b

2 .

Maximum algorithm

To calculate the unique maximum of a function f between a and b, the most efficient algorithm gives a precision
ε ∼ 32−n ⇐⇒ n = 2 + log3 ε with n the number of evalutation of f . The algorithm used is

1. Evaluate and keep in memory f(a) and f(b).
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2. Evaluate and keep in memory f(c = 2a+b
3 ) and f(d = a+2b

3 ).

3. While 2(b−a)
a+b < ε do

(a) If f(c) > f(d) then {b := d, f(b) := f(d), m := c and f(m) := f(c)}
else {a := c, f(a) := f(c), m := d and f(m) := f(d)}.

(b) Take the biggest interval between [a,m] and [m, b] and cut this one in the middle in the new point n.
(c) Evaluate and keep in memory f(n).
(d) Change by pair the name of m and n and the function values into c and d such that c < d.

4. Return f(a)+f(b)
2 .

3.3.3 Numerical results for densities

Our approach permits us to get ϕd, ϕK , ϕth and ϕGCP at all dimension. We recover the asymptotic limit at
d → ∞ where the theory is exact. The comparisons with the experimental results and simulations, which can be
found in [CIPZ11], are correct. Here, we will find these results for Hyper Netted Chain (HNC), Percus-Yevick (PY)
and Verlet-Weis (VW) approximations of the liquid pair correlation and entropy. We will present also the results in
a modified Verlet-Weis approximation (VWfit), where we use the fitted Ad coefficients from [CIPZ11] for the hard
sphere phase diagram until dimension 12.

Results for the equilibrium line
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Figure 8 – Dimensional behaviour of dynamical (ϕd) and
Kauzmann (ϕk) densities for different approximations. In
dashed line, the high dimension result.
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Figure 9 – Dimensional behaviour of Â at the dynamical
(ϕd) and Kauzmann (ϕk) densities for different approxi-
mations. In dashed line, the high dimension result.

For all approximations, the scaled dynamical packing
fraction ϕ̂d converges through the high dimensional value
4.8067787 (Fig. 8), as the scaled dynamical cage Âd which
converges through 0.5766799 (Fig. 9).

For the HNC approximation, the Kauzmann packing
fraction ϕK does not exists at dimension lower than 12.
This comes from the fact that the complexity at the dy-
namical packing fraction is already negative. The same
effect occurs for the VW approximation for a dimension
between 14 and 20 included (Fig. 10). In these cases, we
can consider that ϕd = ϕK . Despite this effect, the value
of the scaled Kauzmann packing fraction ϕ̂K converges to
the same value for all approximations which seems to con-
tinue to increase, the behaviour that the high-dimensional
behaviour suggests (Fig. 8). The same kind of convergence
is also seen for the Kauzmann scaled cage Âk (Fig. 9).

The problem of continuity of the complexity at some
dimension in the figure 10 comes from the evaluation of
Bessel functions for a large arguments, i.e. in our case for
A < 10−4 − 10−5. This problem only occurs in the ϕK
derivation and should be solved to get better values. This
also brings the jumps in the figure 9.
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Figure 10 – The complexity at the equilibrium versus the
scaled packing fraction for different dimensions.
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Results for the jamming line
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Figure 11 – Dimensional behaviour of threshold (ϕth)
and close packing (ϕGCP ) densities for different approxi-
mations. In dashed line, the high dimension result.
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Figure 12 – Dimensional behaviour of α̂ at the thresh-
old (ϕth) and close packing (ϕGCP ) densities for different
approximations. In dashed line, the high dimension result.

For all approximations, the scaled threshold packing fraction ϕ̂th converges through the high dimensional value
6.2581221 (Fig. 11), as the scaled threshold cage α̂th which converges through 0.3024338 (Fig. 12).

At the contrary of equilibrium line, the complexity at the jamming is always positive at the threshold value for
all approximations (Fig. 14). Thus the scaled close packing fraction ϕ̂GCP always exists. For all approximation, the
values converges to a same one. The increasing behaviour follows the high dimensional result as well as for ϕ̂GCP (Fig.
11) than for α̂GCP (Fig. 12).

The VW results, the small cage behaviour and the asymptotic behaviour are shown for bigger dimension in the
figure 13.
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Figure 13 – Threshold (ϕth) and close packing (ϕGCP )
densities for many approximations until d = 300.
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Figure 14 – The complexity at the jamming versus the
scaled packing fraction for different dimensions.

Summary of results for d = 3

In this section, I will summarize the most important result of our approch : we can get a good result for the phase
transition points in dimension 3. In the next table, we can found the results for all approximations, the small cage
expansion, already done in [PZ10] and the results of simulation done in [CIPZ11]. Let me remind that the Kauzmann
packing fraction does not exist for the HNC approximation, because the complexity at the dynamical packing fraction
is negative... The behaviour of the complexity is given in the figure 15 for the equilibrium and in the figure 16 for the
jamming.

Approximations/densities ϕd ϕK ϕth ϕGCP
HNC 0.559609 - 0.412506 0.632244
PY 0.521587 0.624414 0.467388 0.705571

VW=VWfit 0.536662 0.616089 0.446276 0.682338
Small Cage (CS) - 0.617616 - 0.683657

[CIPZ11] 0.571 - 0.651 -
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Figure 15 – The complexity at the equilibrium versus the
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4 The non-ergodicity factor

We define the non-ergodicity factor, as for the liquids,

f(k) = lim
t→∞

S(k, t)

S(k)
(4.0.13)

where S(q) = 〈 1
N ρ(q)ρ(−q)〉 the static structure factor and S(q, t) = 〈 1

N ρ(q, t)ρ(−q, 0)〉 the dynamic structure factor.
From this definition and the replica method, we get

lim
t→∞

S(q, t) =
1

N
ρa(q)ρa(−q) = ρh̃(q) =

∫
dre−iqrρab(r)

ρab(x, y) =
1

N
〈δ(x− xa)δ(y − ya)〉 =

1

N
ρa(x)ρb(y)

(4.0.14)

From the Gaussian form of density function (2.1.2) and the form of the correlation (2.1.3), rewritten as

ρab(x̄, ȳ) = ρ(x̄)ρ(ȳ)

m∏
a=1

gliq(|xa − ya|)
1
m (4.0.15)

we can derive the expression of ρ12(x − y) which decomposes into two parts : 1 and 2 belong to the same replica
(intrareplica interaction) or they belong to different replicas (interreplica interaction). So, we get

ρ12(x− y) =
1

N

∫
dx3...dxmdȳρ

(1)(x, y, x3, ..., xm)ρ(1)(ȳ) +

∫
dx2...dxmdy1dy3...dymρ

(2)(x, x2, ..., xm; y1, y, y3, ..., ym)

= ρ

∫
x3...dxm

∫
dX

m∏
a=1

γA(xa −X) + ρ2
∫
dx2...dxmdy1dy3...dym

∫
dXdY

m∏
a=1

[γA(xa −X)γA(ya − Y )gliq(xa − ya)
1
m ]

= ρ

∫
dXγA(x−X)γA(y −X) + ρ2

∫
dXdY dx2dy1γA(x−X)γA(y1 − Y )gliq(x− y1)

1
m

γA(x2 −X)γA(y − Y )gliq(x2 − y)
1
m qA(X − Y )m−2

(4.0.16)

We can write this equation, for m = 1, in a diagrammatic expression as

ρ12(x− y) = ργ2A(x− y) + ρ2 gg 1/qA

γA γA

γA γA

x X x2

y1 Y
y

(4.0.17)

From the Feynman rules, we get in the momentum space

ρ̂12(q) = ρe−Aq
2

+ ρ2
∫

dk1
(2π)d

dk2
(2π)d

γ̂A(k1)γ̂A(q − k1)γ̂A(q − k2)ĝliq(k1)ĝliq(k2)q̂−1
A (q − k1 − k2) (4.0.18)

where γ̂A(k) = e−Ak
2/2, q̂−1

A the Fourier transform of 1/qA and ĝliq(k) = ĥliq(k) + (2π)dδ(k).
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From this we get the expression for h̃(q)

h̃(q) =
1

ρ2
ρ̂12(q)− (2π)dδ(q)

=
1

ρ
e−Aq

2

+

∫
dk1

(2π)d
dk2

(2π)d
e−Ak1(k1−q)e−Ak2(k2−q)e−Aq

2

ĝliq(k1)ĝliq(k2)q̂−1
A (q − k1 − k2)− (2π)dδ(q)

= e−Aq
2
[

1

ρ
+

∫
dk1

(2π)d
e−Ak1(k1−q)ĥliq(k1)

∫
dk2

(2π)d
e−Ak2(k2−q)ĥliq(k2)q̂−1

A (q − k1 − k2)

+2

∫
dk

(2π)d
e−Ak(k−q)ĥliq(k)q̂−1

A (q − k) + q̂−1
A (q)− (2π)dδ(q)

]
(4.0.19)

The non-ergodicity factor expression is thus

f(q) =
ρh̃

S(q)
=

e−Aq
2

1 + ρh(q)

[
1 + ρ

∫
dk1

(2π)d
e−Ak1(k1−q)ĥliq(k1)

∫
dk2

(2π)d
e−Ak2(k2−q)ĥliq(k2)q̂−1

A (q − k1 − k2)

+2

∫
dk

(2π)d
e−Ak(k−q)ĥliq(k)q̂−1

A (q − k) +QA(q)

] (4.0.20)

where QA(q) = q̂−1
A (q)− (2π)dδ(q) =

∫
dr
qA(r)− 1

qA(r)
eiqr (4.0.21)

The qA function is a positive function which converges through 1, which gives us the possibility of the convergence
of the integral, and it is bigger than its value at 0

qA(0) =
1

Γ(d/2)

∫ ∞
0

drgliq(
√

4Ar)rd/2−1e−r (4.0.22)

which creates some numerical problems if A is too small, qA(0) is null and thus, we cannot compute QA(r).

Conclusion

In the approach we developped, we can derive the phase diagram of the glass transition in whatever dimension,
using a perturbation around the infinite dimension solution. This work is coherent with the previous results developed
at infinite dimension, in the small cage expansion and with the simulations results. We have still some possible
improvement in our results : we should find a better generalization of the Verlet-Weis (VW) approximation in an
arbitrary dimension, using the techniques which are used in the dimension 3 and a better Bessel function algorithm
should be realized to have good results for the Kauzmann transition. Moreover, the simulation of the non-ergodicity
factor should be realized.

Acknowledgments

For his help all along the internship, in particular during written calculations where I have some doubts and to
solve some programmation errors, I want to thanks F. Zamponi and overall for his explanations about the concepts,
not everytime easy to be understand and also for the read-through of this report. I want also to thanks A. Ikeda for
his Fortran code of pair correlation and his comments, which helps me and be essential to write our codes.

References

[BB11] Ludovic Berthier and Giulio Biroli. Theoretical perspective on the glass transition and amorphous materials.
Reviews of Modern Physics, volume 83, pages 587–645, June 2011. arxiv :1011.2578.

[Cav09] Andrea Cavagna. Supercooled liquids for pedestrian. Physics Reports, volume 476, pages 51–124, March
2009. arxiv :0903.4264.

[CIPZ11] Patrick Charbonneau, Atsushi Ikeda, Giorgio Parisi, and Francesco Zamponi. Glass transition and random
close packing above three dimensions. Physical Review Letters, volume 107, October 2011. arxiv :1107.4666.

[HM76] JP Hansen and IR MacDonald. Theory of liquids. June 1976.
[Jac13] Hugo Jacquin. Glass and jamming transition of simple liquids : static and dynamic theory. July 2013.

arxiv :1307.3997.
[MP09] Marc Mézard and Giorgio Parisi. Glasses and replicas. October 2009. arxiv :0910.2838.
[PZ10] Giorgio Parisi and Francesco Zamponi. Mean field theory of hard sphere glasses and jamming. Reviews of

Modern Physics, volume 82, pages 789–845, March 2010. arxiv :0802.2180.
[SMS89] Yuhua Song, E.A. Mason, and Richard Stratt. Why does the carnahan-starling equation work so well ?

Journal of Physical Chemistry, April 1989.
[VW72] Loup Verlet and Jean-Jacques Weis. Perturbation theory for the thermodynamic properties of simple liquids.

Molecular Physics, pages 1013–1024, June 1972.

19

http://arxiv.org/pdf/1011.2578
http://arxiv.org/pdf/0903.4264
http://arxiv.org/pdf/1107.4666
http://arxiv.org/pdf/1307.3997
http://arxiv.org/pdf/0910.2838
http://arxiv.org/pdf/0802.2180

	Some generalities about liquids and glasses
	Theory of liquids
	Some definitions
	The partition function
	The direct correlation function c(r)
	The HNC approximation
	The PY approximation
	The CS approximation
	The VW approximation

	Generalities about glasses
	The relaxation time
	The phase diagram of glasses
	The replica method


	Derivation of equations for the entropy and the phase diagram
	The replicated entropy
	The equation for A
	The complexity
	The equilibrium equations (d,K)
	The jamming equations (th,GCP)

	Dimensional behaviour of the phase diagram
	Asymptotic behaviour
	Derivation of qA(r)
	Derivation of Sliq()
	Derivation of densities

	Small cage expansion
	Derivation of eq and K
	Derivation of j and GCP

	Computation for finite dimension
	Algorithm for gliq(r,)
	Algorithm to compute the densities
	Numerical results for densities


	The non-ergodicity factor



