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Introduction

The project of this internship was the Kinetic Monte Carlo
studies of some Reaction-Diffusion systems in presence of ob-
stacles to find some efficient strategies. The domain where
searchers look for targets is two dimensional with reflecting
boundaries (Sec. 2 and Sec. 4.1) or periodic boundaries (Sec.
4.2). This domain, to simplify simulations, is a square or a cir-
cle. The obstacles inside the two dimensional domain can be
mobile or immobile. In the section 1, algorithms and methods
used all along the internship will be presented. In the section
2, results obtained in a continous domain will be shown for dif-
ferent reaction conditions. In the section 3, the construction
of functions which permit to have the different probability
densities according to a protective domain will be explained.

And in the last section 4, results obtained in a discrete do-
main will be shown with, in particular, a new particle : the
bystander which accelerate the reaction.

1 Methods of simulation

1.1 Monte-Carlo method

One of the most popular examples for a Monte-Carlo
method is the calculation of π. For this, a large number of
points are randomly chosen inside the square [−1, 1]2 (x and
y coordinated are chosen according to an uniformly distibuted
probability density between -1 and 1) and we count how many
points are inside the circle (x2 + y2 < 1) (Fig. 1). We obtain
with the ratio of this number and the total number of points,
the value of π4 as the area of the circle divided by the area of
the square.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Figure 1 – 2000 points uniformly distributed

The precision of the measure of π depends on the total
number of points N : the relative error scales like 1√

N
. In con-

sequence, the precision of the estimation of π becomes better
with a large N.
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Figure 2 – π value obtain by Monte-Carlo method (blue)
and the relative error (red) with the number of points

To have a good precision, we need also a good random
number generator. Within my studies I always used the ran-
dom number generator "mersenne twister", an algorithm for
excellent pseudo random numbers, which passes the "Die
Hard tests".
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Kinetic Monte-Carlo method

The kinetic Monte-Carlo method is a Monte-Carlo method
to simulate the time evolution of some stochastic processes
with a given known rate. The update mechanism consists to
find the next transition thanks to the rates and the time when
this transition happens. To do this, we iterate the processus
over a large number N of samples where random numbers are
chosen according to the known rates. This algorithm gives the
correct solution with a relative error of 1√

N
if the transitions

are not correlated and if the processes associated with the
rates are of the Poisson process type.

1.2 Gillespie’s method [1] [2] [3]
This method was found to simulate numerically the

stochastic time evolution of N chemical species in reaction
through M equations Rµ.

We define ∀µ ∈ J1,MK, aµdτ = probability that the reac-
tion Rµ will occur in [t, t+ dτ ] and

a =

M∑
µ=1

aµ

aµ depends on the concentration of reactive molecules and
reaction coefficients.

We obtain the probability that the next reaction will occur
in [t+ τ, t+ τ + dτ ] and will be the Rµ reaction :

P (τ, µ)dτ = aµe
−aτdτ (1.1)

Thus, we can obtain the probability P1(τ)dτ that the next
reaction will occur in [t + τ, t + τ + dτ ] and the probability
P2(µ|τ)dτ that the next reaction will be Rµ knowing the time
τ of reaction.

P1(τ) =

M∑
µ=1

P (τ, µ) = ae−aτ (1.2)

P2(µ|τ) =
P (τ, µ)

P1(τ)
=
aµ
a

(1.3)

With these two probabilities, we want to compute the next
reaction time τ and the next reaction Rµ with the Kinetic
Monte-Carlo method. We choose two uniformly distributed
random numbers in [0, 1], r1 and r2. The probabilities P1 and
P2 are normed such that

0 ≤ F1(τ) =

∫ τ

0

P1(t)dt ≤ 1 ∀τ ≥ 0 (1.4)

0 ≤ F2(µ) =

µ∑
k=1

P2(k|τ) ≤ 1 ∀µ ∈ J1,MK (1.5)

So, we can obtain τ and µ inverting the cumulative prob-
abilities F1 and F2 such that

F1(τ) = r1 ⇒ τ = −1

a
ln(r1) (1.6)

F2(µ) = r2 ⇒
µ−1∑
k=1

ak < ar2 ≤
µ∑
k=1

ak (1.7)

So, for processes where there are more than one possible
next event, the Gillespie’s method generates randomly which
will be the next event and when it will occur. This method
permits to return a random number according to all proba-
bility densities (discrete or continous) just thanks to an uni-
formly distributed random number in [0, 1] and the inversion
of the cumulative probability.

1.3 First passage kinetic Monte-Carlo (FP-
KMC) method [4]

This method is used for reaction-diffusion processes. It
replaces small diffusion hops (in lattice model for example,
which needs a small network for a convergence of solution and
so creates a real slowing down of numerical simulations) by a
diffusion of particles over long distances through a sequence
of superhops. Each particle diffuses within its own protective
domain, nonoverlapping with domains of other particles : this
permit a factorization of N-body problem to 1-body problem
totally solved. Efficient diffusion of one particle inside the pro-
tective domain is given by time-dependent Green’s functions
[6] which deliver the first passage statistics of random walks.

The master equation for a diffusive particle in d-dimension
is given by

∂PD
∂t

= D∆PD (1.8)

where PD(~r, t) denotes the probability distribution of a
freely diffusing particle inside the domain G with a boundary
∂G which could be absorbing and/or reflecting.

Let call S(t) the surviving probability density, i.e. the
probability density that the particle has not been absorbed
at the domain boundary at time t, ρb(t) the probabity den-
sity that the particle is absorbed at the domain boundary
for the first time at time t, ρn(~r|t) the probability density to
be at the position ~r ∈ G knowing that the particle has not
been absorbed at time t and ρf (~r|t) the probability density
to be absorbed at the position ~r ∈ ∂G knowing that particle
is absorbed at time t.

S(t) =

∫
G

PD(~r, t) ~dr (1.9)

ρb(t) = −dS
dt

(t) (1.10)

ρn(~r|t) =
PD(~r, t)

S(t)
for ~r ∈ G (1.11)

ρf (x|t) = −D
~∇PD(~r, t).~nr

ρb(t)
for ~r ∈ ∂G (1.12)

The expression of PD is well known thanks to Green’s
functions for the 1D case. It depends on the two boundary
conditions : reflecting or absorbing. For higher dimensions,
the expression of PD(~r, t) is known only for some domains
G thanks to Green’s functions : rectangle, circle, cuboid and
sphere for example. For L = ∞, we have the well-known so-
lution in dimension d

PD,∞(~r, t) =
1

(4πDt)d/2
e−

~r2

4Dt (1.13)

3



FPKMC Algorithm

(1) At t=0, construct nonoverlapping protective domains
around all walkers.

(2) Generate a first passage time (fpt) for each protective
domain according to ρb within this domain and store them
all in a list.

(3) Take tµ the minimum of all fpt and find the corre-
sponding domain µ. Put t← tµ.

(4) Sample an exit position for the selected walker µ ac-
cording to ρf .

(5) See the reaction condition (collision...) and take the
appropriate action (remove...).

(6) Sample a new position according to ρn for particles
whose protective domains are close to the walker µ’s new po-
sition.

(7) Construct new protective domain for moving particles
in (4) and (6) and replace the corresponding fpt in the list by
a new one according to ρb.

(8) Go to (3) until the complete reaction or the reach of
a maximal time.

a

b

c

Figure 3 – Steps of FPKMC algorithm : a/ First passage step
for the red particle. b/ No passage step for the green particle
due to the new position of red particle too close to the green
boundary. c/ Construction of new protective domains... and
so on.

1.4 Intermittent ballistic transport algo-
rithm

We need to define two probability densities according to
the change of motion ρd→b(t)dt the probability to change the
motion from diffusive to ballistic between t and t+dt and
ρb→d(t)dt the probability to change the motion from ballistic
to diffusive between t and t+ dt.

ρd→b(t) = kde
−kdt (1.14)

ρb→d(t) = kbe
−kbt (1.15)

(1) At t=0, construct nonoverlapping protective domains
around all walkers : they have a diffusive motion.

(2) Generate a first passage time (fpt) for each protective
domain according to ρb within this domain and store them
all in a list.

(3) Take tµ the minimum of all fpt and all changing motion
time and find the corresponding domain µ. Put t← tµ.

(4) If tµ is a fpt, repeat all steps (5),(6),(7) and (8) of
FPKMC algorithm else change the motion of µ particle.

(5) If the motion changes from diffusive to ballistic, sample
the new position according to ρn. Take randomly the direction
~v of the ballistic transport. Sample the next changing motion
time of the particle as the minimum of the time according
to ρb→d and the next crossing time to the domain boundary.
Else if the motion changes from ballistic to diffusive, compute
the new position as ~r ← ~r+~vt. Construct the new protective
domain of the particle, replace its corresponding fpt in the
list and sample the next changing motion time of the particle
according to ρd→b.

(6) Go to (3) until the complete reaction or the reach of
a maximal time.

In our simulations, a particle in ballistic motion couldn’t
react, hence it is allowed to be within the protection box of
another particle, as long as it is ballistically moving. As soon
as a particle in ballistic motion meet the domain boundary,
his motion changes to diffusive.

1.5 Reaction-Diffusion problem with an an-
nihilation rate [5]

This problem follows the equation

∂P

∂t
(~r, t) = D∆P (~r, t)− k(~r, t)P (~r, t) (1.16)

Homogeneous rate k(t)

We define the probability density to have an annihilation
at time t as :

ρa(t) = − d

dt
[exp(−

∫ t

0

k(τ)dτ)] (1.17)

We only have to replace in the FPKMC algorithm the
step (3) to look for the minimum of the fpt tb according to ρb
and the annihilation time ta according to ρa. If ta < tb, the
particle is removed at the position ~r sampled with ρn(~r, ta),
otherwise the a new position ~r of the particle is sampled with
ρn(~r, tb).

Inhomogeneous rate k(~r, t)

If the annihilation rate is inhomogeneous, there is a corre-
lation between the annihilation position and the annihilation
time, hence, the idea above will fail. We define thus,

km(t) = max
~r∈G
|k(~r, t)| (1.18)

ρa(t) = − d

dt
[exp(−

∫ t

0

km(τ)dτ)] (1.19)

In this case the particle is removed if ta < tb and if an
uniformly distributed random number in [0, 1] is smaller than
k(~r,t)
km(t) which consists to the rejection sampling method. A
more precise explanation, not necessary for following sections,
is given in [5].
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1.6 Sampling of random number according
to an arbitrary probability density

There are two possibilities to generate random numbers
according to an arbitrary probability density ρ :

1- the inversion sampling, according to the Gillespie’s
method seen in the section 1.2. We need to inverse the cumu-
lative probability F =

∫ t
0
ρ(t′)dt′ to obtain a random number

according to ρ from an uniformly distributed random num-
ber in [0, 1]. But this is many times too hard to do when the
bisection method is the lonely way to inverse : we need to
evaluate about 20 times F to have this number.

2- the rejection sampling.
This second method consists to cover the probability den-

sity ρ(t) function by an easily inversible function ρh(t). For
this we choose ρh like a piecewise constant function on N
intervals such that

∀t ∈ [ti, ti+1], i ∈ J0, N − 2K ρh(t) = pi (1.20)

∀t ∈ [tN−1,∞], ρh(t) =
Q

(t+ 1− tN−1)2
(1.21)

with ∀i, pi = max
t∈[ti,ti+1]

ρ(t) and Q = pi · (ti+1 − ti)

Q is a constant define by p0 = ρ(0) and p1 independant.
The cumulative probability of each interval is the same : Q.
The norm of ρh is, thus, k = N ·Q.

Let r a random number from a uniform distribution in the
interval [0, 1], we choose a candidate time tcand according to
ρh, we have easily the interval m corresponding to r is the
integer part of N · r.

tcand = (r − m

N
) · 1

pm
+ tm ∀m ∈ J0, N − 2K (1.22)

tcand = tN−1 − 1 +
1

N · (1− r) for m = N − 1 (1.23)

To have the good probability density ρ and not ρh, we
need to reject some of these tcand : if the ratio ρ(tcand)

ρh(tcand)
is

smaller than an uniformly distributed random number rrej in
[0, 1], tcand is rejected and a new one is chosen. For a large
number of tcand computed (Monte-Carlo method), the prob-
ability density of these tcand corresponds very well to ρ.

The special shape of the helping density makes its inver-
sion very fast in combination with the precalculation of the
acceptance rate. The rejection rate depends only on k. It is
given by k−1

k .
With this method, we have as average number of evalua-

tion of ρ : k ∼ 1.02.

An example : the circle protective domain

For this protective domain the radius of circle R=1 and
the diffusivity D=1, the probability densities are

ρunit,b(t) = 4
∑
α0

e−α
2
0t

J1(α0)
(1.24)

ρunit,n(r|t) =

∑
α0
re−α

2
0r J0(α0r)

J1(α0)2∑
α0

e
−α2

0t

α0J1(α0)

(1.25)

with α0 the zeros of J0.
ρf (R,ϕ, t) returns only an angle ϕ uniformly distributed

between 0 and 2π.
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Figure 4 – Covering function of ρb for Q=0.05 and the ac-
cepted rate ρb

ρh

Normally Q ∼ 0.001 and N ∼ 1000 for a better approxi-
mation of ρb and so a faster code (k ∼ 1.01). If the accepted
rate is bigger than 95% the time tcand is accepted without
evaluating ρb. So we evaluate only in 15% of cases ρb.

To cover ρunit,n(r|t), we need to construct M time inter-
vals such that

B(tj , tj+1) =

∫ 1

0

dr max
t∈[tj ,tj+1]

ρn(r|t) < kj ∼ 1.02 (1.26)

where the covering function ofmaxt∈[tj ,tj+1] ρn(r|t) is com-
puted as precedently. Thus, we can found r with a rejection
sampling for a knowing t.

We obtain for R 6= 1 and D 6= 1 the probability densities

ρb(t) =
D

R2
ρunit,b(

Dt

R2
) (1.27)

ρn(r|t) =
1

R
ρunit,n(

r

R
|Dt
R2

) (1.28)

Before my arrival, all these functions were written for all
one-dimensional intervals, a rectangle, a circle, a sector, a
cuboid, a sphere, a spherical sector, a spherical cap. I con-
tribute writting functions for an annulus. The construction of
these functions will be explain more precisely in the section
3.

2 Continuous domain

The first results shown in this report will be for particles
moving in a continuous space-time.

The first scenario of reaction is simply the finding of a
target by a searcher when the two particles collide (Sec. 2.1).

The second scenario of reaction is the finding of a target
when the time during which a searcher is closer than δr to
the target is superior than δt (Sec. 2.2).

For these two conditions, as soon as the target is found,
it’s removed and the searcher survives, to eventually find an-
other target. We look for the probability density of the time
of targets’ finding with the FPKMC method and it’s evolu-
tion with the number and the area occupied by obstacles. In
the adimensional studied 2D-domain (a square or a circle),
there are Ns searchers looking for Nt targets with a radius
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rpart = 0.005, diffusing both with an unitary diffusivity, and
No obstacles with a radius robs, chosen proportional to rpart,
which can diffuse (Sec. 2.1.2) with an unitary diffusivity.

Let call dpart the smallest distance to other particles, dobs
the smallest distance to obstacles, d

′

obs the second smallest
distance to obstacles, db the distance to the closest bound-
ary, d

′

b the distance to the second closest boundary, dmin the
minimum of dpart and dobs and d

′

min the minimum of dpart
and d

′

obs. All this distances are computed without taking into
account the hard core distances.

2.1 Collision process

For the collision problem, we look for the time of targets’
finding by searchers in the next subsections, where obstacles
are immobile (Sec. 2.1.1) or mobile (Sec. 2.1.2) and where
searchers can have an intermittent ballistic transport (Sec.
2.1.3). The algortihm used here is the FPKMC algorithm
shown in the section 1.3 where the step (5) is "Remove the
target if the smallest distance from a searcher is smaller than
twice the radius of particles".

2.1.1 Immobile obstacles

For the case where obstacles are immobiles, we have two
ways to initialize uniformly the domain. For the first one,
we let enough space between obstacles and boundaries which
permit to a particle to pass everywhere, i.e. creating space of
twice the particles’ radius around obstacles. For the second
one, the position of obstacles are choosen randomly just with
no obstacles’ overlap and so producing some non allowed area
for particles.

2.1.1.1 First initialization

The positions of obstacles are choosen randomly such that
the distance to domain boundaries is bigger than robs+2rpart
and the distance to other obstacles is bigger than 2robs +
2rpart. The positions of particles are choosen randomly in the
free area such that the distance to domain boundaries is big-
ger than rpart and the distance to obstacles is bigger than
robs + rpart.

Protective domains

The protective domains used for this problem are :
1- If dobs = 0, a semicircular sector tangent to

the obstacle, centered in the particle position with a radius
min(0.05robs, d

′

min, db), not to big due to the small area re-
jected by this particular protective domain (Fig. 5).

2a- Else if db < dmin, a rectangle such that the small-
est distance from the particle to each side is the biggest pos-
sible to have the biggest possible first passage time (Fig. 6).
This is only use for a square domain.

2b- Or else if db = 0, a semicircular sector along
the boundary centered in the particle position with a radius
min(dmin, d

′

b) for a square domain (which requires more com-
putational time but which gives the same total probability
densities).

2c- Or else if db = 0, a sector centered in the particle
position with a radius dmin such that the sector is totally in
the domain, for a circular domain (Fig. 7).

3- Else, a circle centered in the particle position with
a radius min(dmin, db).

Figure 5 – Protective domain when the particle is close to
obstacles : in red, the reflecting boundary and in green, the
absorbing boundary

Figure 6 – Rectangle protective domain construction : in
black the area occupied by obstacles and other protective do-
mains which couldn’t be overlaped

Figure 7 – Protective domain when the particle is close to
the boundary of a circular domain : in red, the reflecting
boundary and in green, the absorbing boundary

A slowing down of the numerical code is possible when a
distance or a time is smaller than 10−15 due to the double
precision so the collision condition is in reality : the distance
between the searcher and the target is smaller than 2.001rpart
and the condition to have the protective domain close to ob-
stacles is dobs < 0.001rpart which introduce an error smaller
than the one due to stochastic fluctuations.

Results for one target and one searcher

For the case where one searcher looks for one target, the
computation time increase with the number of obstacles in a
t ∼ N2.5

o law (Fig. 8).
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Figure 8 – Evolution of computational time with No for
100,000 samples and robs = 0.05 in a square

The probability density ρc(t) that the target is found at
the time t is reproduced in the Fig. 9. We see that

ρc(t) ∼ 1

〈t〉e
− t
〈t〉 (2.1)

with 〈t〉 the average time according to ρc. This expression
is the one of no-memory processes. The evolution is similar
whatever the obstacle number after the renormalization by
〈t〉. So, 〈t〉 is enough to describe the probability density and
so its evolution with all different arguments (No, robs).
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Figure 9 – ρc(t) for differents values of No for robs = 0.05 in
a square

The mean collision time increases linearly with the domain
area without obstacles (Fig. 10), increases with the number
of obstacles at radius constant and decreases with the radius
of obstacles for a constant area occupied by obstacles (Fig.
11 and 12).
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Figure 10 – Mean collision time vs area of a circular domain
without obstacle
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Figure 11 – Mean collision time vs area occupied by obsta-
cles for many radii in a square
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Figure 12 – Mean collision time vs area occupied by obsta-
cles for many radii in a circle

The behaviour of 〈t〉 with the area A occupied by obsta-
cles is linear for small A with a slope decreasing with robs and
diverges for A in the range of 0.6.

Results for many targets and many searchers

For the case where many searchers look for many targets,
the evolution of the proportion of targets not found at time
t is shown in Fig. 13 and 14.
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Figure 13 – Time evolution of Nt for Ns = 5 and Nt = 5 for
different No and robs = 0.05 in a square
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Figure 14 – Time evolution of Nt for Ns = 5 and Nt = 5 for
different No and robs = 0.05 in a circle

The evolution looks like

Nt(t) = Nt(0)e−λt with λ =
ln 2

t1/2
and N(t1/2) =

Nt(0)

2
(2.2)

So t1/2 represents totally Nt(t). It’s evolution with the
number of obstacles presents a minimum (Fig. 15 and 16).
This behaviour can be explained by the fact that if there are
No obstacles and Ns searchers, in average, one searcher meets
No
Ns

obstacles before finding the target (if robs ≥ rpart) and
so if No > αNs, t1/2 increases with No and otherwise, t1/2
decreases with No only due to the fact that the area allowed
for particles decreases. The value of α depends on the value
of No where the 2 phenomenon have the same weight.
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Figure 15 – Evolution of t1/2 with No for Ns = 5 and Nt = 5
for many radii in a square
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Figure 16 – Evolution of t1/2 with No for Ns = 5 and Nt = 5
for many radii in a circle

2.1.1.2 Second initialization

The positions of obstacles are choosen randomly such
that the distance to domain boundaries is bigger than robs
which assures that obstacles are in the domain and the dis-
tance to other obstacles is bigger than 2robs, which assures
a nonoverlaping between obstacles. The positions of particles
are choosen randomly in the free area such that the distance
to domain boundaries is bigger than rpart and the distance to
obstacles is bigger than robs + rpart.

This configuration of obstacles can isolate particles from
some space in the domain so, a configuration is accepted only
if each target can be found by, at least, one searcher (Fig.
17). Otherwise, the time of meeting is infinite and 〈t〉 has no
sense.

We can easily find all separated areas as cycles in a graph
containing as link, the obstacles closer to the boundary than
robs+2rpart or closer to another obstacles than 2robs+2rpart.
After finding all these possible cycles (if they exist), we look
the belonging cycle of each targets (it’s only to look if a point
is in a polygon) and if at least one searcher belongs to the
same cycle. If it’s the case, the first collision time is com-
puted, otherwise another configuration is computed.

Figure 17 – In red, searchers and in green, targets. This
configuration is accepted

Protective domains

This different initialization requires to have two other
kinds of protective domains when dobs = 0 and :

- db = 0. We need to take a sector centered in the
particle with an angle ϕ = arccos(

xobs−rpart
robs+rpart

) and a radius
r = min(0.03, sin(0.1phi)) · (robs + rpart) (Fig. 18).

- d
′

obs = 0. We need to take a sector centered in the
particle with an angle ϕ = 2arccos(

xobs−rpart
2(robs+rpart)

) and a radius
r = min(0.03, sin(0.1phi)) · (robs + rpart) (Fig. 19).

The radius of these sectors is taken the smallest as pos-
sible to have the smallest error in rejected area given by the
difference between orange and red angles which needs to be,
at least, smaller than 10 %. This happens due to reflecting
boundaries of the sector. But, this radius needs to be biggest
than a certain value 0.03 · (robs + rpart) to have a fast simu-
lation.
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Figure 18 – Protective domain when the particle is close to
one obstacle and one boundary with in black the particle’s
forbidden area, in red the reflecting boundaries and in green
the absorbing boundaries

Figure 19 – Protective domain when the particle is close
to two obstacles with in black the particle’s forbidden area,
in red the reflecting boundaries and in green the absorbing
boundaries

Results for one target and one searcher in a square

The probability ρc has the same behaviour as in the case
of the first initialization and the mean collision time is quite
larger (Fig. 20).
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Figure 20 – Mean collision time vs area occupied by obsta-
cles for many radii

Results for many targets and many searchers in a
square

The time evolution of Nt has the same behaviour as in
the case of the first initialization and t1/2 seems to have a
minimum for a certain value of No (Fig. 21).
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Figure 21 – Evolution of t1/2 with No for Ns = 5 and Nt = 5
for many radii

2.1.2 Mobile obstacles

For the case where the obstacles are mobile, we only ini-
tialize such that all particles are totally in the domain and
and don’t overlap each other. For this, we only use circu-
lar protective domains and semicircular sectors close to the
boundary.

A problem of slowing down

When two or more particles are very close, with a dis-
tance closer than the double precision, a numerical slowing
down appears. In this case, we have two possibilites to over-
come the problem, when the distance dmin becomes smaller
than din. We simulate

- a lattice move with small dx range where the time
of steps is dt = dx2

4D ...
- a Langevin move with small dt such that

xn+1 = xn + cos(ϕ)
√
4Ddt

yn+1 = yn + sin(ϕ)
√
4Ddt

where ϕ is an uniformly distributed random number between
0 and 2π ...

... until that dmin is larger than dout > din.
For the lattice process if the distance between two par-

ticle’s centers becomes smaller than 2rpart or if the distance
to the boundary is smaller than rpart, the last step is not
accepted.

For the Langevin process, a reflection law is used when two
particles collide : we find the collision time when dmin(tc) = 0.

√
(x1(tc)− x2(tc))2 + (y1(tc)− y2(tc))2 = 2rpart (2.3)

and we change the angle as ϕ ← π − ϕ + 2θ with θ the
absolute angle between the two particles at tc. The same work
is done to find a possible collision for each particle with the
boundary when db(tb) = 0.

min(x(tb), 1− x(tb), y(tb), 1− y(tb)) = rpart (2.4)

and the angle is changing as ϕ← π−ϕ for vertical bound-
aries and ϕ← 2π − ϕ for horizontal boundaries.

For numerical simulations, I took dout=10 din=100 dx and
for dt the corresponding value to dx.

The two methods give the same probability density of the
leaving time ρb(t) and the same probability density of the
mass point distance ρf (R) traveled between reaching din and
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reaching dout but the first one requires twice more computa-
tion time than the second one.

For two particles, which diffuse in R2, there is an analytic
expression for the temporal probability density of reaching
the distance dout, when having started in distance din. This
probability is nothing else than the probability density ρb of
the annulus protective domain (Sec. 3) for a = 2rpart and
b = dout.

There is also an analytic expression for the probability
density of the mass point position which is ρ∞(~R, t) with
a diffusivity D = D1 + D2. So, the probability density of
the leaving position of the mass point ~R, knowing that dout
is reached at t, is ρf (R|t) = ρ∞(~R, t).ρb(t). The probability
density of the distance traveled by the mass point is

ρf (R) =

∫ ∞
t=0

2πRρ∞(R, t)ρb(t)dt (2.5)

In the Fig. 22 and 23, we compared these results to our
simulation scheme.
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Figure 22 – ρb(t) obtained from different methods
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Figure 23 – ρf (R) obtained from different methods

Results for one target and one searcher in a square

The mean collision time seems to decrease with the area
occupied by mobile obstacles (Fig. 24). The computation of
100000 samples requires a lot of computational time which
explains the error bars of the figure.
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Figure 24 – Mean collision time vs area occupied by obsta-
cles for many radii

2.1.3 Intermittent ballistic transport

For the intermittent ballistic transport problem, we use
the algorithm shown in the section 1.4 for the collision con-
dition. When a searcher is in ballistic motion, if it met an
obstacle like a domain boundary, it changes directly his mo-
tion to the diffusive one.

The mean collision time is computed for many values
of kb and kd for a diffusivity D = 10−3 and a velocity
~v = {cosϕ, sinϕ} where ϕ is an uniformly distributed ran-
dom number between 0 and 2π. We see a minimum of 〈t〉
in the space (kd, kb) at (175, 33) with a relative value 0.361
compared to the only-diffusive one (Fig. 25).

Figure 25 – 〈t〉 values in the space (kd, kb) relative to the
value obtained with an only-diffusive motion limited between
[0, 2]

We look for now the minimum’s evolution and the evolu-
tion of its depth with the number of obstacles in the domain.
The numerical simulation of the Fig. 25 takes one week, so
for the moment, I don’t have these evolutions.

2.2 Reaction process

For the reaction problem, we look for the time of targets’
finding by searchers with the FPKMC algorithm shown in
the section 1.3 where the step (5) is "Remove the target if
the smallest distance from a searcher is smaller than δr dur-
ing at least a time of δt". All results present in this section
will be done with the first kind of obstacles’ initialization.
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Protective domains

To do this, we use circle protective domains centered in
the particle’s position with a radius of :

- 0.5(dmin − δr) if dmin > δr out of the reactive do-
main. This permit to find the time of entering in the reactive
domain.

- 0.5(δr − dmin) if dmin < δr in the reactive domain.
In this case an overlap of protective domain is allowed because
it gives exactly the same probability than for nonoverlaping
protective domains (using a lattice motion or a Langevin mo-
tion as explain in the section 2.1.2) but the computational
time is shorter.

To permit the particle to enter in the reactive domain
without any slowing down, we need to overlap a little bit the
protective domains and the reactive domain (Fig. 26).

dr

dr

Figure 26 – Scheme out and in the reactive domain

For smaller overlaps, the simulation scheme becomes more
and more exact. We looked for an overlap value, which does-
n’t influence the result anymore (Fig. 27). For next results, I
use δr = 10rpart and an overlap of 10−3δr.
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Figure 27 – Evolution of 〈t〉 with the value of overlap for
No = 0

Results for one target and one searcher in a square

For a small δt, the evolution of the mean reaction time
versus the area occupied by obstacles is the same as in the
scenario of collision discussed in Sec. 2.1. In fact, as soon as
the target enter in the reactive domain of the searcher, it is
removed. And due to the fact that the expectative time to
traveled in δr which is δ2r

4D is small compared to 〈t〉, 〈t〉 does-
n’t change.

For larger δt, the mean reaction time increases more for
small number of obstacles than for big number of obstacles
due to the fact that the reaction time δr play a significant
role only when the two particles are already very close and so
have no more influence from obstacles. So, we see an inversion
of the evolution of 〈t〉 versus the area occupied by obstacles
which pass from an increasing one to a decreasing one (Fig. 29
and 30). This last result is in relation with the experimental
results.
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Figure 28 – Evolution of 〈t〉 with No for different values of
overlap for δt = 0.001
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Figure 29 – Mean reaction time vs area occupied by obsta-
cles for many radii and δt = {0.0005, 0.001, 0.005}

11



10−3 10−2 10−1 100

Area occupied by obstacles

0

5

10

15

20

25

30

35

〈t〉

dt = 0.0005

dt = 0.0010

dt = 0.0015

dt = 0.0020

dt = 0.0025

Figure 30 – Mean reaction time vs area occupied by obsta-
cles for robs = 0.05 and many δt

Results for many targets and many searchers

The time evolution of Nt is similar as in the Sec. 2.1.1 and
we define t1/2 as in eq. 2.2. We see for short δt, the presence
of a minimum as in the collision scenario and for bigger δt,
only a decreasing of t1/2 with the number of obstacles (Fig.
31).
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Figure 31 – Evolution of t1/2 with No for Ns = 5 and Nt = 5
for many radii and δt = {0.0005, 0.001, 0.005} in a square

3 Annulus

A good possibility to replace the small hops around ob-
stacles and the little imprecision due to the sector protective
domain, is to compute the solution of the diffusion equation
for the annulus protective domain (Fig. 32). The boundary
close to the obstacle of radius a is reflecting (in red) and the
other boundary is absorbing (green).

b

a

Figure 32 – Annulus protective domain

The particle is initially (t=0) at r=a=1 and D=1 for di-
mensionless equation. The probability to be at (r, ϕ) at time
t is

PD(r, ϕ, t) =
π

4

∑
n∈Z

cos(nϕ)
∑
αn

Jn(αnb)2Cn(r)α2
ne
−α2

nt

(1− n2

α2
n
)Jn(αnb)2 − J ′n(αn)2

(3.1)

with

Cn(r) = J
′
n(αn)Yn(αnr)− Y

′
n(αn)Jn(αnr) (3.2)

and αn such that

J
′
n(αn)Yn(αnb)− Y

′
n(αn)Jn(αnb) = 0 (3.3)

As shown in the section 1.3, we can find all other proba-
bilities thanks to this last one.

The covering function will be calculated for b ∈
{1.2, 1.4, 1.6, 1.8, 2} due to the difficulty to calculate every-
time the coefficient of the series depending on b.

3.1 Probability density ρb(t)

The surviving probability at the time t, i.e. the probabil-
ity that the particle has not reached the absorbing boundary
at time t is :

S(t) =

∫ b

r=a

∫ 2π

ϕ=0

PD(r, ϕ, t)rdrdϕ (3.4)

S(t) = b
∑
α0

πJ0(α0b)
2[Y1(α0)J1(α0b)− J1(α0)Y1(α0b)]

J0(α0b)2 − J1(α0)2
e−α

2
0t (3.5)

We can deduce from S, the probability density to reach
the absorbing boundary at time t :

ρb(t) = b
∑
α0

α
2
0

πJ0(α0b)
2[Y1(α0)J1(α0b)− J1(α0)Y1(α0b)]

J0(α0b)2 − J1(α0)2
e
−α2

0t (3.6)
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Calculation of ρb

The sum converge more or less fast depending on the time
t. For large times, a small number of addends is required for a
small relative error. We found for all times the number of ad-
dends necessary to have a relative error of the order of 10−15
to be in the range of the double precision in C++, and not
a larger one due to a larger consuming of time to evaluate ρb
which doesn’t increase the precision of the value.

For shorter times, we need a large number of addends. We
found an expression of ρb for short times with an interpolation
in

P (t)√
πt3

e−
β
4t (3.7)

with P a polynom in t and β a positive real.
The limit time between these two ways to obtain an ex-

pression of ρb is taken such that the maximum number of
addends in the sum is 30.

Calculation of covering functions

For the interval b=1.2, we obtain the covering function
shown in Fig. 33 with the rejection rate shown in Fig. 34 for
a constant area Q = 0.05 which gives N = 24 and k = 1.2.
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Figure 33 – ρb for b = 1.2 and its corresponding covering
function
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Figure 34 – Rejection rate for the construction of Fig. 33

For the C++ library, we cover all five functions for differ-
ents b (quite similar after renormalization shown in Fig. 35)
with only one step function ρh, which uses less computation
memory, i.e. we cover the function

max
b∈{1.2,1.4,1.6,1.8,2}

ρb(
t

tmax
)

ρb,max

where tmax is the time of the maximum of ρb and ρmax,
its value. ρh was constructed for Q = 0.0016 which gives
N = 627 and k = 1.01. So, on average, the candidate time
will be rejected only in 1% of the cases.
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Figure 35 – Renormalization of ρb

3.2 Probability density ρn(~r|t)
First, we want to sample the no passage position (r, ϕ) at

time t by sampling first the no passage radius r according to
ρn(r|t) and then the no passage angle ϕ at time t, knowing r,
according to ρn(ϕ|r, t) which is not actually done...

The probability to be at the radius r, under the condition
of not having reached r = b yet is

ρn(r|t) =
r

S(t)

∫ 2π

ϕ=0

PD(r, ϕ, t)dϕ (3.8)

ρn(r|t) =
r
∑
α0
α0

J0(α0b)
2C0(r)

J0(α0b)2−J1(α0)2
e−α

2
0t

b
∑
α0

J0(α0b)2[Y1(α0)J1(α0b)−J1(α0)Y1(α0b)]

J0(α0b)2−J1(α0)2
e−α

2
0t

(3.9)

Calculation of ρn
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Figure 36 – ρn for b = 1.2 at many times

For large times, the series converges as fast as in the case
of ρb. Hence, we determine the necessary number of addends
to have a relative error of 10−15.

For shorter times, we have

∀t < t0, ∀r ∈ [1, b]ρn,b=1.2(r|t) ∼ ρn,b=1.4(r|t) (3.10)
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which permit to approximate ρn with the expression with
smaller b which needs less addends for the same relative error.

For the case b=1.2, we need to find an approximate func-
tion for times shorter than 10−3 like

ρn(r|t) ∼ ρn,1(r|t) + ρn,2(r|t) (3.11)

with ρn,1(r|t) = N(t)e−
(r−γ(t))2)

4t (3.12)

a, normed in time, gaussian approximation of ρn and

ρn,2(r|t) = β(t)(e−σ(t)r
2 − 1)e−α(t)r

2

(3.13)

an approximation of ρn − ρn,1. γ, β, σ and α are posi-
tive and are calculated with a polynomial interpolation of the
real probability density. The relative error between ρn and
magnitude of this approximation is 10−3.
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Figure 37 – ρn relative error for short times

So, we have the next time development for b=2.0 :

t [0, 7.10−4] [7.10−4, 0.002] [0.002, 0.0075]
ρ ρn,1 + ρn,2 ρn,1.2 ρn,1.4
t [0.0075, 0.017] [0.017, 0.03] [3.10−2,∞]
ρ ρn,1.6 ρn,1.8 ρn,2.0

For others b, the same time limits are used but only an
approximation with probability densities with smaller b is
available. This give for example b = 1.2 :

t [0, 7.10−4] [7.10−4∞]
ρ ρn,1 + ρn,2 ρn,1.2

Calculation of covering functions

To do the rejection sampling with a covering function, we
need to cut the time in intervals [ti, ti+1] such that

∫ b

r=1

max
t∈[ti,ti+1]

ρn(r|t)dr < 1.02 (3.14)

From these results, we have the time intervals : [0.00099,
0.00107, 0.00116, 0.00126, 0.00136, 0.00147, 0.00159, 0.00172,
0.00186, 0.00202, 0.00219, 0.00238, 0.0026, 0.00285, 0.00314,
0.00349, 0.00392, 0.00448, 0.00527, 0.00665, 30] for b = 1.2.
For these intervals of time, the covering function is a step-
function which covers maxt∈[ti,ti+1] ρn(r|t) with N ∼ 600
which gives k ∼ 1.02.

For shorter times, we cover the probability density with a
function whose primitive is easy to inverted like

ρh(r, t) = α(t)(r − β(t))e
− (r−β(t))2

σ(t) (3.15)

with β and σ calculated to have the same average and the
same variance than ρn and α a function which assures that
ρh > ρn for all (r, t).

An other way to do this, is cover ρn in 2D which given
(r, ϕ) directly by the conservation of the volume instead of
the area.

3.3 Probability density ρf (ϕ|t)
The probability to be at (b, ϕ) knowing that at t, the par-

ticle reached the boundary for first time is

ρf (ϕ|t) = −∂rPD(r = b, ϕ, t)

ρb(t)
(3.16)

ρf (ϕ|t) =
1

2π
+

∞∑
n=1

cos(nϕ)

∑
αn

e−α
2
nt

α2
nJn(αnb)

2C
′
n(b)

(1− n2

α2
n

)Jn(αnb)2−J
′
n(αn)

2

π
∑
α0
e−α

2
0tα2

0
J0(α0b)2C

′
0(b)

J0(α0b)2−J1(α0)2

(3.17)
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Figure 38 – ρf for b = 1.2 at many times

The computation of ρf (ϕ|t) is similar to the case of
ρn(r|t), but ρf converges for t → 0 to a smooth function
(Fig. 38), obtained with a Taylor expansion as

ρf (ϕ|t→ 0) =

4∑
m=0

∑
n

am,n cos(nϕ)tm (3.18)

with am,n calculated with ρn derivates at t=0. For this
probability density, it’s not necessary to do an interpolation.

Covering functions are obtained by the same way, i.e. we
need to cut the time in intervals [ti, ti+1] such that

∫ 2π

ϕ=0

max
t∈[ti,ti+1]

ρf (ϕ|t)dϕ < 1.02 (3.19)

and after cover the function maxt∈[ti,ti+1] ρf (ϕ|t). For
short times, we cover the Taylor expansion to do the rejection
sampling.
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4 Discrete domain

Another way to have results of reaction-diffusion is to use
a model in a discrete domain. This way requires generally
more computational time to have results with more incerti-
tudes due to a convergence of results with a small step-size.
The first section 4.1 will show results of similar problems than
the section 2.1 which permit to compare the evolution and the
magnitude of results. The second section 4.2 will show results
with a new kind of particle : bystanders, which not react like
obstacles but which accelerate the move of searchers and ob-
stacles, which are inactive searchers, close to them.

4.1 Without bystanders

In this section, we want to study the evolution of mean col-
lision time with the number of obstacles. Two different models
will be investigated, first a model where particles and obsta-
cles move on lattice sites without any idea of radius, and a
second one with a radius proportional to the lattice step-size.

4.1.1 Particles on lattice sites

In this case, there are Ns searchers looking for Nt targets,
in a LxL lattice with reflecting boundary conditions, with No
obstacles. The probability to move in a neighbour lattice site
is 1/4. If the neighbour site is already occupied, the particle
doesn’t move.

Immobile obstacles

For one searcher and one targets, the mean collision time
increases with the number of obstacles. When the proportion
of sites occupied by obstacles becomes about one third of the
total number of sites of the lattice, the mean collision time
decreases. This happens due to the rejection of initial config-
urations where the target and the searcher will not find due
to the obstacles initialization (Similar situation to Fig. 17).
For short concentrations of obstacles, the mean collision time
increases with the lattice size L at fixed concentrations. This
is due to the fact that everything happens like obstacles and
particles have a radius L−2.
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Figure 39 – Evolution of 〈t〉 with the occupation of sites by
obstacles for Ns = 1 and Nt = 1

For many searchers and many targets, the half-life time
t1/2 define in Eq. 2.2 increases with the number of obstacles.
In this case, there is no minimum.
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Figure 40 – Evolution of t1/2 with No for Ns = 5 and Nt = 5

Mobile obstacles

For one searcher and one targets, the mean collision time
increases with the number of obstacles. There is no maximum
as in the immobile case due to the fact that the searcher finds
the target whatever the initial configuration.
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Figure 41 – Evolution of 〈t〉 with the occupation of sites by
obstacles for Ns = 1 and Nt = 1

4.1.2 Particles with radius moving on discrete posi-
tions

In this model, there are Ns searchers looking for Nt
targets, in a LxL lattice with reflecting boundary condi-
tions, with No obstacles. We take L = 1000, so we have
dx = 0.001 and we take the radius of particle as rpart =
5dx = 0.005. We simulate results with a radius of obstacles
robs = {5, 10, 25, 50, 100}dx like in section 2.1. The probabil-
ity to move in a neighbour lattice site is 1/4. If the distance
between two particles becomes smaller than 2rpart then the
last step will be rejected. The global time is nothing else than
N
4L2 , with N the number of time-steps.

Immobile obstacles

For one searcher and one targets, the mean collision time
involves like in Sec. 2.1.1 (Fig. 42).

For many searchers and many targets, the evolution of
the half-life time t1/2 with No seems to present a minimum
no really precise due to fluctuations (Fig. 43).

15



10−5 10−4 10−3 10−2 10−1 100

Area occupied by obstacles

0.3

0.4

0.5

0.6

0.7

0.8

〈t〉 4L
2

robs = 0.100

robs = 0.050

robs = 0.025

robs = 0.010

robs = 0.005

Figure 42 – Mean collision time vs area occupied by obsta-
cles for many radii for Ns = 1 and Nt = 1
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Figure 43 – Evolution of t1/2 with No for Ns = 5 and Nt = 5
for many radii

Mobile obstacles

For one searcher and one targets, the mean collision time
seems to increase with the number of obstacles, which is dif-
ferent to the result shown in Sec. 2.1.2. This can be produced
by the fact that dx is not enough small.
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Figure 44 – Mean collision time vs area occupied by obsta-
cles for many radii for Ns = 1 and Nt = 1

4.2 With bystanders

Two scenarios for the introduction of bystanders will be
discussed : one consists to have bystanders on the lattice,
which permit the interaction with searchers and obstacles if
they are on one of neighbour sites (Sec. 4.2.1). The second one
consists to have bystanders out of lattice sites which permit to

the bystander to change the moving probability of searchers
and obstacles on the neighbour links (Sec. 4.2.2).

4.2.1 With bystanders on lattice sites

The lattice is partially occupied by four kinds of parti-
cles : searchers, targets, obstacles and bystanders. The lattice
size is LxL with, here, L=60, the smallest size which keep the
good result : for L>60, results don’t change. We use periodic
boundary conditions.

The normal move

Each particle can move with a probability p. So each par-
ticle can move to a special neighbour site with a probability
p/4. For a target, an obstacle or a bystander, if this spe-
cial neighbour site is occupied by an other particle (whatever
its kind), the target/obstacle/bystander stays in its previous
site, otherwise, it moves to this special neighbour site. For a
searcher, if this special neighbour site is occupied by a tar-
get, the target is removed and the searcher replaces it. If this
special neighbour site is occupied by an other kind of parti-
cle (searcher, obstacle or bystander), the searcher stays on its
previous site, otherwise it moves to the neighbour site.

The accelerated move

If a bystander occupies a neighbour site (whatever the
number), the particle can move with a probability q ≥ p. So,
in this case, each particle can move to a neighbour site with a
probability q/4. The moving of different particles is the same
than before except the fact that if the special neighbour site
is occupied by a bystander, the particle exchanges its position
with the bystander. If nothing is precise, q = 1 in the next
sections.

Update rule

For each time step, the position of each particle is calcu-
lated with the precedent rules. We choose a uniformly dis-
tributed random number between 0 and 1. Depending on the
values of p and q a classical "towersampling"-step is per-
formed to determine whether the particle moves and if it
moves, in which direction this will happen. The update is done
sequently (particle one by one) in next results but a random
update (particle chosen randomly) gives same results.

Numbers and motion of different particles

In the following Ns denotes the number of searchers, Nt
the number of targets, No the number of obstacles and Nb the
number of bystanders. In this model, searchers are in every
case moving with acceleration.

Problem Target Bystanders Obstacles
1 Immobile Immobile Non Acc.
2 Immobile Immobile Acc.
3 Immobile Mobile Non Acc.
4 Immobile Mobile Acc.
5 Mobile Immobile Non Acc.
6 Mobile Immobile Acc.
7 Mobile Mobile Non Acc.
8 Mobile Mobile Acc.
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Nb ∈ {0, 1, 5, 10, 25, 50, 100, 200, 300}

Case Ns Nt No Occupation
20 :1 200 100 1800 58.3% - 66.3%
10 :1 100 100 900 30.5% - 38.5%
5 :1 50 100 450 16.7% - 24.7%
2.5 :1 25 100 225 9.7% - 17.7%
1 :1 10 100 100 5.5% - 13.5%
0.5 :1 5 100 45 4.2% - 12.2%

Obtention of results

For each sample, we choose a random position to each
particle at the time t=0 (according to the fact that a particle
cannot have the same position as another one). At each time
step, t ← t + 1, the position of each particle is updated. So,
we can have the removing time of all targets : t1, t2, ..., tNb .

With a big number of samples Nsample (about 100000 to
have a relative precision of ±0.33%), we can plot the number
of targets vs the time : Nt(t) = average of not removed target
number at t on all samples and the half-life time t1/2 is given
by

Nt(t1/2) =
Nt(0)

2
(4.1)

Example of a simulation

To illustrate the model before the interesting simulation,
I want to show the result for L = 10, Ns = 10, Nt = 10,
No = 10 and Nb = 10. With 100 000 samples, we obtain
Nt(t) (Fig. 45) and t1/2 = 16.

0 20 40 60 80 100 120
t

10−2

10−1

100

N
t(
t)
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t(
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Lattice model 2
Ns = 10 - Nt = 10 - No = 10

Figure 45 – Evolution of the number of targets with the
time

So, Nt(t) involves like a decreasing exponential law :

Nt(t) = Nt(0)e−λt with λ =
ln 2

t1/2
(4.2)

like every no memory processes. So t1/2 is sufficent to char-
acterize the process.

Example of one sample

Immobile Targets - Mobile Obstacles - Immobile Bystanders
t = 30 - Ns = 10 - Nt = 5 - No = 10 - Nb = 10

searchers targets obstacles bystanders

Figure 46 – Situation at time t=30 for one sample for
Ns = 10, Nt = 10, No = 10 and Nb = 10 at t=0

In this sample, t1 = 3, t2 = 4, t3 = 6, t4 = 8, t5 = 27,
t6 = 41, t7 = 45, t8 = 86, t9 = 87 and t10 = 168.

Results with a probability p=0.5

With 100 000 samples and L=60, we obtain the functions
Nt(t) (Fig. 47) and t1/2(Nb) (Fig. 48).
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Figure 47 – Time evolution of Nt in the problem 2 for the
case 10 :1

The half-life time t1/2 is always decreasing with the num-
ber of bystanders more or less fast depending on the problem.
The same kind of evolution happens for other concentrations.
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Figure 48 – Evolution of t1/2 with Nb in all problems for the
case 10 :1

The value of q (the probability to move with acceleration)
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takes values between p=0.5 and 1. The value of t1/2 is opti-
mized for q = 0.
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Figure 49 – Evolution of t1/2 with Nb and the probability q
in the problem 2 for the case 10 :1

4.2.2 With bystanders out of lattice sites

In this model, bystanders are no longer on the lattice sites.
They don’t move and only influence the probability to move
on a particular link which are computed at t=0. Targets are
immobile and searchers and obstacles are accelerated close to
bystanders. The probability of different links can be taken in
different ways : asymmetric probabilities in section 4.2.2.1,
symmetric probabilities independent on the number of neigh-
bour bystanders in section 4.2.2.2 and symmetric probabilities
dependent on the number of neighbour bystanders in section
4.2.2.3.

After the computation of probabilities after each initial-
ization, we update at each time step the position of each par-
ticle (searchers and obstacles) according to the probability to
stay, to go left, to go right, to go up and to go down. If the
neighbour site is occupied, the particle stays at the previous
position. If a searcher moves to a site occupied by a target,
the target is removed and the searcher takes its place.

The time evolution of the targets number Nt(t) and the
half-life time t1/2 are computed like in section 4.2.1.

4.2.2.1 Asymmetric transition probabilities

Computation of transition probabilities

The presence of one bystander close to a node of the lat-
tice reduces the probability to stay on the node (0.5→ 0) and
increases the probability of links which connect this node to
another node near the bystander (0.125→ 0.375). The prob-
ability of links which permit to leave bystanders (i.e. to reach
a node not near to a bystander) is the same as the proba-
bility of links of a node not near to a bystander (0.125). In
this model, searchers and obstacles are moving faster along
the bystanders and bystanders have no influence on links not
near to them.

We can have three different situations for each node close
to a bystander : 2 links close to a bystander (probability
0.375), 3 links close to a bystander (probability 0.2917) and
4 links close to a bystander (probability 0.25) to respect the
normalization of transition probabilities (Fig. 50).

If the node is not close to a bystander, for each link the
transition probability is 0.125 and the probability to stay is
0.5.

Similar to the precedent model, we define : p="probability
to move on a node not close to a bystander" and
q="probability to move on a node close to a bystander". We
have always p ≤ q ≤ 1.
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Figure 50 – Transitions of a node close to a bystander
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Figure 51 – Example of transition probabilities on a lattice

Results with a probability to move without accelera-
tion p=0.5

With 100 000 samples and L=60, we obtain the functions
Nt(t) (Fig. 52) and t1/2(Nb) (Fig. 60). The half-life time de-
crease less faster than in the first model and the smaller t1/2
is obtain for q = 1.
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Figure 52 – Time evolution of Nt for the case 10 :1
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Figure 53 – Evolution of t1/2 with Nb and the probability q
for the case 10 :1
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4.2.2.2 Symmetric transition probabilities : inde-
pendent on the number of bystanders

Computation of transition probabilities

In this case, the probability to move is 0.125 for each direc-
tion if there is no bystander close to the link and 0.25 if there
are one or two bystanders close to the link. The probability
to stay is computed with the normalization of probabilities.

Similar to the precedent models, we define :
p="probability to move on a node not close to a bystander"
and q="probability to move on a node close to a bystander"
such that the probability to move on a link close to a by-
stander is 0.25 · q. We have always p ≤ q ≤ 1.
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Figure 54 – Transitions of a node close to a bystander
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Figure 55 – Example of transition probabilities on a lattice

Results with a probability to move without accelera-
tion p=0.5

With 100 000 samples and L=60, we obtain the functions
Nt(t) (Fig. 56) and t1/2(Nb) (Fig. 60).
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Figure 56 – Time evolution of Nt for the case 10 :1

4.2.2.3 Symmetric transition probabilities : depen-
dent on the number of bystanders

Computation of transition probabilities

In this case, the probability to move is 0.125 for each di-
rection if there is no bystander close to the link, 3/16 if there
is one bystander close to the link and 0.25 if there are two by-
standers close to the link. The probability to stay is computed
with the normalization of probabilities.

Similar to the precedent models, we define :
p="probability to move on a node not close to a bystander"
and q="probability to move on a node close to a bystander"
such that the probability to move on a link is increased by
q/16 by the presence of each bystanders. We have always
0 ≤ q ≤ 1, when q=0, we have a non accelerated probabilities
for each node.
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Figure 57 – Transitions of a node close to a bystander
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Figure 58 – Example of transition probabilities on a lattice

Results with a probability to move without accelera-
tion p=0.5

With 100 000 samples and L=60, we obtain the functions
Nt(t) (Fig. 59) and t1/2(Nb) (Fig. 60).
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Figure 59 – Time evolution of Nt for the case 10 :1

4.2.3 Comparison of t1/2 for different concentrations

The model 1 corresponds to Sec. 4.2.1, the model 2.1 to
Sec. 4.2.2.1, the model 2.2 to Sec. 4.2.2.2 and the model 2.3 to
Sec. 4.2.2.3. The half-life time always decreases with the num-
ber of bystanders, more pronounced for the first model due
to the presence of bystanders in lattice sites which decreases
the number of sites available for searchers and targets. In the
second model, the decreasing is more pronounced for a small-
est possible value of pstay close to bystanders and for a value
of plink independent on the number of neighbour bystanders.
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Figure 60 – Evolution of half-life time with the number of
bystanders

The evolution is similar for all others concentration with
a coefficient cα:1 such that tα:11/2 = cα:1t10:11/2 .

α 20 5 2.5 1 0.5
cα:1 1.85 0.48 0.225 0.085 0.04

Conclusion

The most efficient strategy to find targets in a two-
dimensional domain in presence of immobile obstacles is to
have a number of searchers similar to the number of obsta-
cles. A large radius of obstacle is better than a small one for

a same area occupied by obstacles. If the searchers needs to
be a certain time δt close to targets favorises a large num-
ber of obstacles for an efficient search in the case of large δt.
For mobile obstacles, a large number of obstacles decreases
the reaction time. The introduction in the domain of parti-
cles which accelerated the motion of searchers and obstacles
is favorable.

This internship permits me to learn the different algo-
rithm shown in Sec. 1 and the way to use them in C++ codes
with an efficient computation time, through the first passage
and the discrete methods. In this internship, I learned also to
use the C++ library of protective domains computed by K.
Schwarz and Y. Schröder and to create some of these func-
tions.
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